Home
Class 12
MATHS
int(cosalpha)/(sinxcos(x-alpha))dx= . . ...

`int(cosalpha)/(sinxcos(x-alpha))dx=` . . . . . .`+c` where `0 lt x lt alpha lt pi/2` and `alpha` =constant

A

`log|cotx+tanalpha|`

B

`log|tanx+cotalpha|`

C

`-log|tanx+cotalpha|`

D

`-log|cotx+tanalpha|`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(1-cosx)dx=......+c where 0 lt x lt pi

If (1)/(cos alpha * cos beta )+ tan alpha * tan beta = tan gamma , where 0 lt gamma lt (pi)/2 and alpha , beta are positive acute angles , show that (pi)/4 lt gamma lt (pi)/2

Obtain Lim_(xrarr2) ((Cos alpha)^(x)+(Sin alpha)^(x)-1)/(x-2) , where (0 lt alphalt pi/2)

If |x - 2| lt 3 then -1 lt x lt 5 .

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is (a) tan^2(alpha/2) (b) cot^2(alpha/2) (c) tan^2alpha (d) cotalpha/2

If 1 + cos alpha + cos^(2) alpha + ….oo= 2- sqrt2 then find the value of alpha. (0 lt alpha lt pi)

(d)/(dx) ( sqrt(x sin x)) = …… (0 lt x lt pi)

The position of a particle at time t is given by the relation x(t)=(v_(0)/alpha)(1-e^(-alphat)) where v_(0) is a constant and alpha gt 0 . Find the dimensions of v_(0) and alpha