Home
Class 12
MATHS
If A=[(1,1),(0,1)] and B = then AB = BA,...

If `A=[(1,1),(0,1)]` and B = __________then AB = BA, where `B!=I`

A

`[(x,y),(0,x)]`

B

`[(x,x),(y,0)]`

C

`[(x,y),(0,y)]`

D

`[(x,0),(y,y)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,0),(0,-1)] and B=[(0,1),(1,0)] , then AB=[(0,1),(-1,0)] . and BA=[(0,-1),(1,0)] . Clearly AB ne BA .

If AB=BAandA=[{:(1,1),(0,1):}] then, B=......

If A=[1,7] and B=[{:(2,1),(3,4):}] , then find AB.

If A=[{:(1,-1),(0,2),(2,3):}]andB=[{:(1,0),(-1,7):}] then find AB. Also find BA if it exists ?

if AB = A and BA = B, then

Find AB, if A=[(0,-1),(0,2)] and B=[(3,5),(0,0)] .

If A=[{:(0,1),(0,0):}]andI=[{:(1,0),(0,1):}] then prove that (aI+bA)^(3)=a^(3)I+3a^(2)bA .

If A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}] then verify that (AB)^(-1)=B^(-1)A^(-1)

If A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}] then verify that (AB)^(-1)=B^(-1)A^(-1)

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.