Home
Class 12
MATHS
(d)/(dx)e^logx= . . . ....

`(d)/(dx)e^logx=` . . . .

A

`(1)/((logx)^(2))`

B

`(1)/(|x|)`

C

`-(1)/(x(log|x|)^(2))`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) (e^(5x)) = …….

Show that (d)/(dx) e^(ax) cos (bx + c) = r e^(ax) cos (bx + c + alpha) where r= sqrt(a^(2) + b^(2)), cosalpha= (a)/(r ), sin alpha = (b)/(r ) and (d^(2))/(dx^(2)) e^(ax) cos (ax + c) = r^(2) e^(ax ) cos (bx + c + 2 alpha) .

The general solution of the differential equation (dy)/(dx) = e^(x + y) is

Find a particular solution of the differential equation (x + 1)(dy)/(dx) = 2e^(-y) - 1 , given that y = 0 when x = 0.

Let y(x) be the solution of the differential equation (xlogx)(dy)/(dx)+y=2xlogx, (xge1) , Then y(e) is equal to

The integrating factor (I.F.) of the differential equation cos x "" ( dy)/( dx) = y sin x + e^(x) cos x is . . . .

(d)/(dx) (e^(sin^(-1)x + cos^(-1) x))= ……. (|x| lt 1)

Solve the differential equation [(e^(-2sqrtx))/(sqrtx) - (y)/(sqrtx)](dx)/(dy) = 1(x ne 0) .