Home
Class 12
MATHS
(d)/(dx)tan^(-1)((1-x)/(1+x))=...

`(d)/(dx)tan^(-1)((1-x)/(1+x))=`

A

`(-1)/(1+x^(2))`

B

`(1)/(1+x^(2))`

C

`(2)/(1+x^(2))`

D

`(-2)/(1+x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) [Tan^(-1)((x+a)/(1-ax))] =? (where x in R ^(+) , a in R ^(+) , ax lt1 )

Evaluation of definite integrals by subsitiution and properties of its : int_(0)^(1)(d)/(dx)(sin^(-1)""(2x)/(1+x^(2)))dx=..........

If pi lt x lt 2 pi , then (d)/(dx) [ tan ^(-1) ((1 - cos x)/( 1 + cos x))^(1//2) ] is . . . .

(d)/(dx) (tan^(n)x) = ……..

(d)/(dx) tan^(-1) (sec x - tan x) - Find

(d)/(dx ) (tan^(-1)x + cot^(-1) x) = ……

(d)/( dx) [ sin^(-1) ""(x)/(a)] = . . . . . , a lt a and |(x)/(a)| lt 1

Differentiate sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1))

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).