Home
Class 12
MATHS
intxe^(x^(2)log2)*e^(x^(2))dx=+c...

`intxe^(x^(2)log2)*e^(x^(2))dx=`_______`+c`

A

`(2^(x^(2))*e^(x^(2)))/(1+log2)`

B

`(e^(x^(2)log2)*e^(x^(2)))/(log2)`

C

`(2^(x^(2))*e^(x^(2)))/(2(1+log2))`

D

`((2e)^(x^(2)))/(log(2e))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(2x)-1)/(e^(2x)+1)dx=...

intx^(3).e^(x^(2))dx=..........+c

int(1)/((e^(x)+e^(-x))^(2))dx=.....

Find intxe^(x)dx

int 5^(x+1)*e^(2x-1)dx=....+c

int(1)/(sqrt((log1//2)^(2)-x^(2)))dx= . . . . . +c .

Integration by partial fraction : int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(x)-4e^(-x))+c then A+B=.

inte^(2x)(log2x+(1)/(2x))dx=..........+c

int ((x+3)/((x+4)^(2)))e^(x)dx=.....+C