Home
Class 12
MATHS
For three vectors veca, vecb, vecc satis...

For three vectors `veca, vecb, vecc` satisfies `veca+ vecb + vecc = vec0 and |veca| = 3 , |vecb| = 4, |vecc| =2` then `veca. vecb + vecb. vecc + vecc.veca = `_____________.

A

A) `29`

B

B) `(29)/(2)`

C

C) `-(9)/(2)`

D

D) `- (29)/(2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7 , then angle between veca and vecb is

Three vectors veca,vecb and vecc satisfy the relation veca.vecb=0 and veca.vecc=0 . The vector veca is parallel to

For two non - zero vectors veca and vecb | veca + vecb| = | veca| then vectors 2 veca + vecb and vecb are …..

If vecA xx vecB= vec0 and vecB xx vecC=vec0 , then the angle between vecA and vecC may be :

Find |veca|and|vecb| , if (veca+vecb)*(veca-vecb)=8and|veca|=8|vecb| .

Find |veca-vecb| , if two vectors vecaandvecb are such that |veca|=2,|vecb|=3andveca*vecb=4 .

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

If vectors vecA and vecB are such that |vecA+vecB|= |vecA|= |vecB| then |vecA-vecB| may be equated to