Home
Class 12
MATHS
If x, y in R and |{:((a ^(x) + a ^(-x) )...

If `x, y in R and |{:((a ^(x) + a ^(-x) ) ^(2) , (a ^(x) - a ^(-x) ) ^(2), 1),((b ^(x) + b ^(-x)) ^(2),(b ^(x) - b ^(-x) ) ^(2) , 1), ( ( c ^(x) + c ^(-x)) ^(2) , (c ^(x) - c ^(-x)) ^(2) , 1):}|=2 y + 6` then y = ____________.

A

A) 0

B

B) 3

C

C) `-3`

D

D) 6

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z in R , then the value of determinant |{:((2^x+2^(-x))^2,(2^x-2^(-x))^2,1),((3^x+3^(-x))^2,(3^x-3^(-x))^2,1),((4^x+4^(-x))^2,(4^x-4^(-x))^2,1):}| is equal to "............"

If x-iy = sqrt((a+ib)/(c-id)) , prove that (x^(2) + y^(2))^(2) = (a^(2) + b^(2))/(c^(2) + d^(2))

If y= (tan^(-1) x)^(2) show that (x^(2) + 1)^(2) y_(2) + 2x (x^(2) + 1)y_(1) = 2

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

Eccentricity of ellipse (x^(2))/(169) + (y^(2))/(25) = 1 and (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 then (a)/(b) = ……..

y = x^(2) + 2x + C : y' - 2x - 2 = 0

If y= (ax^(2))/((x-a)(x-b) (x-c)) + (bx)/((x-b) (x-c))+ (c )/((x-c)) + 1 then prove that (y')/(y)= (1)/(x) [(a)/(a-x) + (b)/(b-x) + (c)/(c-x)]