Home
Class 11
PHYSICS
If|vecA + vecB| = |vecA - vecB| find ang...

If`|vecA + vecB| = |vecA - vecB|` find angle between `vecA` and `vecB`.

Text Solution

Verified by Experts

We are given:
`|vecA + vecB| = |vecA - vecB|`
Squaring both sides, we have `|vecA + vecB|^2 = |vecA . vecB|^2`
`implies A^2 + B^2 + 2vecA .vecB = A^2 + B^2 - 2vecA . vecB`
so `4vecA. vecB = 0 implies 4 A B cos theta = 0 implies cos theta = 0 implies theta = 90^@`
Hence the angle between A and B is `90^@` .
Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval

If |veca*vecb|=|vecaxxvecb| ,then angle between veca and vecb is :

If veca+vecb+vecc=vec0, |veca|=3,|vecb|=5 and |vecc|=7 , find the angle between veca and vecb .

If |veca*vecb|=|vecaxxvecb| , then the angle between veca and vecb is :

If sqrt(3)|veca.vecb|=|vecaxxvecb| , then angle between veca and vecb is:

If |veca*vecb|=sqrt3|vecaxxvecb| ,then angle between veca and vecb is :

If 2(veca.vecb)= |veca||vecb| then angle between veca and vecb equals to ,

If veca+vecb+vecc=vec0 and |veca|=3,|vecb|=5 , and |vecc|=7 , find the angle between veca and vecb .

If |veca|=2,|vecb|=7 and veca.vecb = 7, then angle between veca and vecb equals to ,

If sqrt2(veca.vecb)= |veca||vecb| then angle between veca and vecb equals to ,