Home
Class 11
PHYSICS
Given W = vecF.vecS = 0 and vecF != 0, v...

Given `W = vecF.vecS = 0` and `vecF != 0, vecS != 0` Then:

A

`vecF _|_ vecS`

B

`vecF = vecS`

C

`vecF || vecS`

D

none of the above is true.

Text Solution

Verified by Experts

The correct Answer is:
A

`W == vecF.vecS ` As `W = 0 implies vecF _|_vecS`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that vec a* vec b=0 and vec a xx vec b= vec 0 . What can you conclude about the vectors vec a and vec b ? .

If vec a , vec b , vec c are vectors such that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c , vec a!= vec0, then show that vec b= vec c

Given that veca cdot vecb = 0 and vecaxxvecb = vec0 . What can you conclude about the vectors veca and vecb ?

If vec r* vec a =0 = vec r* vec b =0 and also vec r* vec c =0 for some non-zero vector vec r , then the value of vec a*(vec b xx vec c) is........

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot

If vec a , vec b , vec c are three non-coplanar vectors and vec d* vec a = vec d* vec b= vec d* vec c= 0 then show that vec d is zero vector.

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""X vec c"" =vec b""X vec d""=""a n d"" vec adot vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

If either vec a = vec 0 or vec b = vec0 , then vec a xx vecb = vec 0 . Is the converse true ? Justify your answer with an example.

Let vec a , vec b , vec c , be three non-zero vectors. If vec a .(vec bxx vec c)=0 and vec b and vec c are not parallel, then prove that vec a=lambda vec b+mu vec c ,w h e r elambda are some scalars dot

If either veca = vec0 or vecb = vec0 then vecaxxvecb= vec0 . Is the converse true? Justify your answer with an example.