Home
Class 14
MATHS
If cosx=-(3)/(5)andpiltxlt(3pi)/(2),then...

If `cosx=-(3)/(5)andpiltxlt(3pi)/(2)`,then the value of sin2x will be

A

`(12)/(25)`

B

`(1)/(15)`

C

`(24)/(25)`

D

`(5)/(26)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin 2x \) given that \( \cos x = -\frac{3}{5} \) and \( \pi < x < \frac{3\pi}{2} \). ### Step-by-Step Solution: 1. **Identify the Quadrant**: Since \( x \) is between \( \pi \) and \( \frac{3\pi}{2} \), it is in the third quadrant. In this quadrant, both sine and cosine are negative. 2. **Use the Pythagorean Identity**: We know that: \[ \sin^2 x + \cos^2 x = 1 \] Given \( \cos x = -\frac{3}{5} \), we can substitute this value into the identity: \[ \sin^2 x + \left(-\frac{3}{5}\right)^2 = 1 \] This simplifies to: \[ \sin^2 x + \frac{9}{25} = 1 \] 3. **Solve for \( \sin^2 x \)**: Rearranging the equation gives: \[ \sin^2 x = 1 - \frac{9}{25} \] Converting 1 into a fraction with a denominator of 25: \[ \sin^2 x = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] 4. **Find \( \sin x \)**: Taking the square root of both sides, we have: \[ \sin x = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5} \] Since \( x \) is in the third quadrant, \( \sin x \) must be negative: \[ \sin x = -\frac{4}{5} \] 5. **Calculate \( \sin 2x \)**: We use the double angle formula for sine: \[ \sin 2x = 2 \sin x \cos x \] Substituting the values we have: \[ \sin 2x = 2 \left(-\frac{4}{5}\right) \left(-\frac{3}{5}\right) \] This simplifies to: \[ \sin 2x = 2 \cdot \frac{12}{25} = \frac{24}{25} \] ### Final Answer: Thus, the value of \( \sin 2x \) is: \[ \sin 2x = \frac{24}{25} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -V|45 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If tan x=(-3)/(4) and (3 pi)/(2)

If cos x=(-3)/(5) " and " pi lt x lt .(3pi)/(2) find the value of (i) "sin 2x "" ""(ii) cos 2x "" ""(iii) tan 2x "

Knowledge Check

  • If cosx=(-sqrt3)/2 and piltxlt(3pi)/2 , then the value of 2cot^2x-3sec^2x is

    A
    A) 4
    B
    B) 2
    C
    C) 6
    D
    D) 8
  • If cosx=(-sqrt3)/2 and piltxlt(3pi)/2 , then the value of 2cot^2x+3cosec^2x is

    A
    16
    B
    8
    C
    14
    D
    18
  • At x= (5pi)/(6), the value of 2 sin 3x+ 3 cos 3x is

    A
    0
    B
    1
    C
    `-1`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2) , tan (x/2)

    At x=5(pi)/(6) then the value of 2sin x+3cos3x is

    If tanx=3/4,pi

    " If "sin^(2)x+sin x cos x-6cos^(2)x=0" and "-(pi)/(2)ltxlt0," then value of "cos2x" is " -3/5 3/5 -4/5 4/5

    If tan^(-1)(x^(2)+3|x|-4)+cot^(-1)(4 pi+sin^(-1)sin14)=(pi)/(2), then the value of sin^(-1)sin2x is (a)6-2 pi( b) 2 pi-6( c) pi-3 (d) 3-pi