Home
Class 14
MATHS
If tanA=ntanBandsinA=msinBthen sec^(3)A(...

If `tanA=ntanBandsinA=msinB`then `sec^(3)A((m^(2)-1)/(n^(2)-1))^((3)/(2)`=?

A

1

B

`cos^(2)A`

C

0

D

`cos^(3)A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations**: \[ \tan A = n \tan B \quad \text{and} \quad \sin A = m \sin B \] 2. **Convert Tangent and Sine**: From the first equation, we can express \(\tan B\) in terms of \(\tan A\): \[ \tan B = \frac{\tan A}{n} \] From the second equation, we can express \(\sin B\) in terms of \(\sin A\): \[ \sin B = \frac{\sin A}{m} \] 3. **Using Cotangent and Cosecant**: We know that: \[ \cot B = \frac{1}{\tan B} = \frac{n \cos A}{\sin A} \] and \[ \csc B = \frac{1}{\sin B} = \frac{m}{\sin A} \] 4. **Using the Identity**: We use the identity: \[ \cos^2 B - \cot^2 B = 1 \] Substituting the values of \(\cos B\) and \(\cot B\): \[ \cos^2 B - \left(\frac{n \cos A}{\sin A}\right)^2 = 1 \] 5. **Substituting Values**: We can express \(\cos^2 B\) in terms of \(\sin A\) and \(\cos A\): \[ \cos^2 B = \frac{m^2}{\sin^2 A} \] Therefore, substituting this into the identity gives: \[ \frac{m^2}{\sin^2 A} - \frac{n^2 \cos^2 A}{\sin^2 A} = 1 \] 6. **Finding a Common Denominator**: Combine the fractions: \[ \frac{m^2 - n^2 \cos^2 A}{\sin^2 A} = 1 \] This implies: \[ m^2 - n^2 \cos^2 A = \sin^2 A \] 7. **Using the Pythagorean Identity**: We can use the identity \(\sin^2 A = 1 - \cos^2 A\): \[ m^2 - n^2 \cos^2 A = 1 - \cos^2 A \] 8. **Rearranging the Equation**: Rearranging gives: \[ m^2 - 1 = n^2 \cos^2 A - \cos^2 A \] This simplifies to: \[ m^2 - 1 = (n^2 - 1) \cos^2 A \] 9. **Solving for \(\cos^2 A\)**: Thus, we can express \(\cos^2 A\) as: \[ \cos^2 A = \frac{m^2 - 1}{n^2 - 1} \] 10. **Finding the Required Expression**: Now we need to find: \[ \sec^3 A \left(\frac{m^2 - 1}{n^2 - 1}\right)^{\frac{3}{2}} \] Using \(\sec A = \frac{1}{\cos A}\), we have: \[ \sec^3 A = \frac{1}{\cos^3 A} \] Therefore: \[ \sec^3 A = \frac{1}{\left(\frac{m^2 - 1}{n^2 - 1}\right)^{\frac{3}{2}}} \] 11. **Final Calculation**: Substituting this into our expression gives: \[ \sec^3 A \left(\frac{m^2 - 1}{n^2 - 1}\right)^{\frac{3}{2}} = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -V|45 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If tanA=(1)/(2),tanB=(1)/(3) , then cos2A=?

If sin A+cos A=m and sin^(3)A+cos^(3)A=n then (1)m^(3)-3m+n=0 (2) n^(3)-3n+ 2m=0(3)m^(3)-3m+2n=0 (4) m3+3m+2n=0

If tanA=m+1 and tanB=m-1 , prove that tan(A-B)=2/(m^(2)) .

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2))/(1^(3))+(2^(2))/(2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

(6) 1+tanA tan2A = sec2A

If cos ec theta-sin theta=m and sec theta-cos theta=n prove that (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=1

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

If inttan^(3)x sec^(3)xdx=((1)/(m))sec^(m)x-((1)/(n))sec^(n)x+c, then (m, n)-=

If : (tan 3 A+tan A)/(tan 3A - tanA)=(sin(mA)/(sin(nA))) then (m,n)= (a) (2,3) (b)(3,4) (c)(4,2) (d) (1,2)

If tan^-1 (sin^2theta - 2 m sintheta + 3m^2) + cot^-1(5^(sec^2y) + m^3) = pi/2 and m be the least value of (1 + sec^-1 t) (1 + cos^-1t), then the value of( |cos theta| - sin theta ) is equal to (1)m/2 (2)m (3)2m (4) m/4

KIRAN PUBLICATION-TRIGONOMETRY -TEST YOURSELF
  1. If alpha be an acute angle asinalpha-bcosalpha=0 ,what will be the val...

    Text Solution

    |

  2. If sintheta+sin^(2)theta+sin^(3)theta=1, then find the value of cos^(6...

    Text Solution

    |

  3. What is the values of tan ((5pi)/(6))sin((7pi)/(6)) ?

    Text Solution

    |

  4. Evaluate: tan ((13pi)/12)

    Text Solution

    |

  5. The value of sin22(1)/(2) will be

    Text Solution

    |

  6. If costheta=-(1)/(2)andtheta lies in third quadrant ,then what will be...

    Text Solution

    |

  7. The value of cos((pi)/(4)-theta)cos((pi)/(4)-phi)-sin((pi)/(4)-theta)s...

    Text Solution

    |

  8. If tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1), then (alpha+beta)=?

    Text Solution

    |

  9. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |

  10. If cosx=-(3)/(5)andpiltxlt(3pi)/(2),then the value of sin2x will be

    Text Solution

    |

  11. If tantheta=(x-y)/(x+y),then value of sintheta is eqaul to (If 0^(@)l...

    Text Solution

    |

  12. What will be the radius of circle in which a central angle of 60^(@) i...

    Text Solution

    |

  13. The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)...

    Text Solution

    |

  14. If tan A=(1-cosB)/(sinB), then tan 2A is equal to

    Text Solution

    |

  15. The length of the shadow of the vertical tower on level ground increas...

    Text Solution

    |

  16. The shadow of a vertical tower becomes 30 metres longer when the altit...

    Text Solution

    |

  17. The angular elevation of the top of a tower from a distant point on th...

    Text Solution

    |

  18. To a man standing at the mid point of the line joining the feet of two...

    Text Solution

    |

  19. ABCDEF is a regular polygon .Two poles at C and D are standing vertica...

    Text Solution

    |

  20. If tanA=ntanBandsinA=msinBthen sec^(3)A((m^(2)-1)/(n^(2)-1))^((3)/(2)=...

    Text Solution

    |