Home
Class 14
MATHS
sqrt225xx(12)^2 + 37=(?)^3...

`sqrt225xx(12)^2 + 37=(?)^3`

A

64

B

13

C

`sqrt6`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{225 \times (12)^2} + 37 = (?)^3 \), we will follow these steps: ### Step 1: Simplify the square root First, we simplify the expression inside the square root: \[ \sqrt{225 \times (12)^2} \] ### Step 2: Calculate \( (12)^2 \) Calculating \( (12)^2 \): \[ (12)^2 = 144 \] ### Step 3: Multiply 225 by 144 Now we multiply 225 by 144: \[ 225 \times 144 \] ### Step 4: Factor 225 We can express 225 as \( 15^2 \): \[ 225 = 15^2 \] Thus, \[ 225 \times 144 = 15^2 \times 144 \] ### Step 5: Calculate \( 15^2 \times 144 \) Now we can calculate: \[ 15^2 = 225 \quad \text{and} \quad 144 = 12^2 \] So, \[ 225 \times 144 = 15^2 \times 12^2 = (15 \times 12)^2 = 180^2 \] ### Step 6: Take the square root Taking the square root: \[ \sqrt{225 \times 144} = 180 \] ### Step 7: Add 37 Now we add 37 to the result: \[ 180 + 37 = 217 \] ### Step 8: Set up the equation Now we have: \[ 217 = (?)^3 \] ### Step 9: Find the cube root To find \( ? \), we need to compute the cube root of 217: \[ ? = \sqrt[3]{217} \] ### Step 10: Calculate the cube root We can estimate the cube root of 217. We know that: \[ 6^3 = 216 \quad \text{and} \quad 7^3 = 343 \] Thus, \( ? \) is approximately 6. ### Final Answer Since \( 6^3 = 216 \) and \( 7^3 = 343 \), we conclude that: \[ ? = 6 \]
Promotional Banner

Topper's Solved these Questions

  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos
  • TEST - 10

    MAHENDRA|Exercise MULTIPLE CHOICE QUESTIONS|50 Videos

Similar Questions

Explore conceptually related problems

sqrt(2)xx sqrt(3)

sqrt(.0025)xx sqrt(2.25)xx sqrt(.0001)=?(a).000075 (b) .0075(c).075 (d) None of these

1.Find the value of (112)/(sqrt(196))times(sqrt(576))/(12) (1) 8, (2) 12, (3) 16,

What will come in place of the question-mark (2) in the following questions? sqrt225 +sqrt2304 =? -(12)^2

'""^(3)sqrt(2) xx ""^(4)sqrt(2) xx ""^(12)sqrt(32)= ?

The simplified value of (sqrt3-sqrt2)/(sqrt 12- sqrt8)-1/3xx sqrt27-1/2xx root (3)(27) is closest to?