Home
Class 14
MATHS
(sqrt8)^6xx(64)^3div(8)^?=(8)^5...

`(sqrt8)^6xx(64)^3div(8)^?=(8)^5`

A

3

B

1

C

5

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{8})^6 \times (64)^3 \div (8)^{?} = (8)^5\), we will follow these steps: ### Step 1: Rewrite the terms in the equation using the same base First, we need to express all the terms in the equation with base 8. 1. \(\sqrt{8}\) can be rewritten as \(8^{1/2}\). 2. Therefore, \((\sqrt{8})^6 = (8^{1/2})^6 = 8^{6/2} = 8^3\). 3. Next, \(64\) can be rewritten as \(8^2\) because \(64 = 8^2\). 4. Thus, \((64)^3 = (8^2)^3 = 8^{2 \times 3} = 8^6\). Now we can rewrite the entire equation: \[ (8^3) \times (8^6) \div (8)^{?} = (8)^5 \] ### Step 2: Combine the powers of 8 Using the property of exponents that states \(a^m \times a^n = a^{m+n}\), we can combine \(8^3\) and \(8^6\): \[ 8^{3 + 6} \div (8)^{?} = 8^5 \] This simplifies to: \[ 8^9 \div (8)^{?} = 8^5 \] ### Step 3: Apply the division of powers Using the property of exponents that states \(a^m \div a^n = a^{m-n}\), we can simplify the left side: \[ 8^{9 - ?} = 8^5 \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ 9 - ? = 5 \] ### Step 5: Solve for the question mark Now, we can solve for \(?\): \[ 9 - 5 = ? \] \[ ? = 4 \] ### Final Answer The value of \(?\) is \(4\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt8)^6xx(64)^3div8^4=(8)^x

3sqrt(162)xx(303div8)=(?)^(2)

(-8)^3xx(-9)^3-:6^5

(4)/(5) xx 2(3)/(4) div (5)/(8)=?

((-4)/3)^8xx((-4)/3)^8div((-3)/4)^(-5) is equal to

4int(sqrt(a^(6)+x^(8)))/(x)dx is equalto sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+ca^(6)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+csqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c

(4xx4xx4xx4xx4xx4)^(5)xx(4xx4xx4)^(8)div (4)^(3)=(64)^(?)

(5)/(8)xx2(3)/(5) div (4)/(9)=?