Home
Class 14
MATHS
(96xxsqrt49)/sqrt196=8xxsqrt?...

`(96xxsqrt49)/sqrt196=8xxsqrt?`

A

36

B

6

C

`36^2`

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((96 \times \sqrt{49}) / \sqrt{196} = 8 \times \sqrt{?}\), we will follow these steps: ### Step 1: Simplify the square roots First, we need to simplify the square roots in the expression. \[ \sqrt{49} = 7 \] \[ \sqrt{196} = 14 \] ### Step 2: Substitute the simplified values Now we can substitute these values back into the equation: \[ (96 \times 7) / 14 = 8 \times \sqrt{?} \] ### Step 3: Calculate the left side of the equation Next, we calculate the left side: \[ 96 \times 7 = 672 \] Now divide by 14: \[ 672 / 14 = 48 \] So, we have: \[ 48 = 8 \times \sqrt{?} \] ### Step 4: Isolate \(\sqrt{?}\) Now, we need to isolate \(\sqrt{?}\) by dividing both sides by 8: \[ \sqrt{?} = 48 / 8 \] \[ \sqrt{?} = 6 \] ### Step 5: Square both sides to find ? To find the value inside the square root, we square both sides: \[ ? = 6^2 \] \[ ? = 36 \] ### Conclusion Thus, the value that should be inside the square root is 36.
Promotional Banner

Similar Questions

Explore conceptually related problems

(96xxsqrt49)/(sqrt196)=?xxsqrt36

sqrt(512)xxsqrt(1250)

sqrt(4(57)/(196))=?

sqrt(26)xxsqrt(6.24)xxsqrt(102)=?