Home
Class 14
MATHS
On simplification (a^p/a^q)^(p+q) xx(a^q...

On simplification `(a^p/a^q)^(p+q) xx(a^q/a^r)^(q+r)xx(a^r/a^p)^(r+p)` yeilds

A

1. `a^(p+q+r)`

B

2. `a^(pq+qr+rp)`

C

3. 0

D

4. 1

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\frac{a^p}{a^q})^{(p+q)} \times (\frac{a^q}{a^r})^{(q+r)} \times (\frac{a^r}{a^p})^{(r+p)}\), we can follow these steps: ### Step 1: Apply the Quotient Rule of Indices Using the property of indices that states \(\frac{a^m}{a^n} = a^{m-n}\), we can rewrite each fraction in the expression: \[ \frac{a^p}{a^q} = a^{p-q}, \quad \frac{a^q}{a^r} = a^{q-r}, \quad \frac{a^r}{a^p} = a^{r-p} \] ### Step 2: Substitute Back into the Expression Now we substitute these back into the original expression: \[ (a^{p-q})^{(p+q)} \times (a^{q-r})^{(q+r)} \times (a^{r-p})^{(r+p)} \] ### Step 3: Apply the Power Rule of Indices Using the property of indices that states \((a^m)^n = a^{m \cdot n}\), we can simplify each term: \[ a^{(p-q)(p+q)} \times a^{(q-r)(q+r)} \times a^{(r-p)(r+p)} \] ### Step 4: Combine the Exponents Since the bases are the same, we can add the exponents: \[ a^{(p-q)(p+q) + (q-r)(q+r) + (r-p)(r+p)} \] ### Step 5: Expand Each Term Now we expand each of the products in the exponent: 1. \((p-q)(p+q) = p^2 - q^2\) 2. \((q-r)(q+r) = q^2 - r^2\) 3. \((r-p)(r+p) = r^2 - p^2\) Putting these together, we have: \[ p^2 - q^2 + q^2 - r^2 + r^2 - p^2 \] ### Step 6: Simplify the Exponents Notice that \(p^2\) and \(-p^2\) cancel out, \(q^2\) and \(-q^2\) cancel out, and \(r^2\) and \(-r^2\) cancel out: \[ 0 \] ### Step 7: Final Result Thus, we have: \[ a^0 = 1 \] So the final answer is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of (a^(p)/a^(q))^(p+q-r)xx(a^(r)/a^(p))^(r+p-q)xx(a^(q)/a^(r))^(q+r-p)

((a^(9))/(a^(r)))^(p)xx((a^(r))/(a^(p)))^(q)xx((a^(p))/(a^(q)))^(r)=1

((a^(p))/(a^(q)))^(p+q)times((a^(q))/(a^(r)))^(q+r)times((a^(r))/(a^(p)))^(r+p)

((x^(p))/(x^(q)))^((p+q))((x^(q))/(x^(r)))^((q+r))((x^(r))/(x^(p)))^((r+p))

The statement (p^^(p to q) ^^ (q to r)) to r is

(~ p ^^ ~ q) ^^ ( q ^^ r) is a

.prove that (a^(p+q))^(2)(a^(q+r))^(2)(a^(r+p))^(2)/((a^(p)*a^(q)*a^(r))^(4))=1

7. Let A= {p, q, r}. Which of the following is an equivalence relation on A?(a) R, = {(p, q), (q, r), (p, r), (p, q)} (b) R2 = {(1,9).(,p), (r,r). (9,7)} (c) Rz = {(p, p), (q,9), (r, r), (p, q)} (d) one of these

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. For what value of a , b , c expression sqrt(a^3b^(-2//3)c^(-7//6))+ro...

    Text Solution

    |

  2. If a^b =b^a and a = 2b then value of b is

    Text Solution

    |

  3. On simplification (a^p/a^q)^(p+q) xx(a^q/a^r)^(q+r)xx(a^r/a^p)^(r+p) y...

    Text Solution

    |

  4. Expression ((a^x)/(a^y))^(x^2+xy+y^2)xx(a^y/a^z)^(y^2+yz+z^2)xx(a^z/a^...

    Text Solution

    |

  5. Expression ((a+1/b)^(1/x)(a-1/b)^(1/x))/((b+1/a)^(1/x)(b-1/a)^(1/x)) i...

    Text Solution

    |

  6. The value of x^d/(x^d + x^(d+b -a)+x^(d+c-a))+(x^d)/(x^d + x^(d+a-b)+x...

    Text Solution

    |

  7. If x=root3(a)-1/(root3(a)) then value of x^3 +3x is

    Text Solution

    |

  8. If a = 2 + 2^(1/3)+2^(2/3) then value of a^3-6a^2+6a is

    Text Solution

    |

  9. If a^(x)=b^(y)=c^(z) and abc = 1, then what is the value of xy + yz + ...

    Text Solution

    |

  10. Value of y = sqrt((a^(y/x))/(a(x/y))) xx sqrt((a(x/z))/(a(y/x))) xx ...

    Text Solution

    |

  11. If a^(m^n) = (a^(m))^(n) then which of the following relation is true ...

    Text Solution

    |

  12. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  13. Value of sqrt(4 + sqrt(15)) is

    Text Solution

    |

  14. If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

    Text Solution

    |

  15. Square root of 3/2 (x - 1) + sqrt(2x^2 - 7 x - 4) is

    Text Solution

    |

  16. Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

    Text Solution

    |

  17. Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

    Text Solution

    |

  18. Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x^4)) is

    Text Solution

    |

  19. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  20. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |