Home
Class 14
MATHS
Expression ((a+1/b)^(1/x)(a-1/b)^(1/x))/...

Expression `((a+1/b)^(1/x)(a-1/b)^(1/x))/((b+1/a)^(1/x)(b-1/a)^(1/x))` is an integer if

A

`a = 4, b = 2 , x = 4`

B

`a = 16 , b = 2 , x = 4`

C

`a = 64 , b =2 , x = 8`

D

`a = 16 , b = 4 , x = 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{(a + \frac{1}{b})^{\frac{1}{x}} (a - \frac{1}{b})^{\frac{1}{x}}}{(b + \frac{1}{a})^{\frac{1}{x}} (b - \frac{1}{a})^{\frac{1}{x}}} \] and determine when it is an integer, we can follow these steps: ### Step 1: Simplify the Expression We can rewrite the expression using the property of exponents: \[ \frac{(a + \frac{1}{b})(a - \frac{1}{b})^{\frac{1}{x}}}{(b + \frac{1}{a})(b - \frac{1}{a})^{\frac{1}{x}}} \] This allows us to combine the powers: \[ = \left(\frac{(a + \frac{1}{b})(a - \frac{1}{b})}{(b + \frac{1}{a})(b - \frac{1}{a})}\right)^{\frac{1}{x}} \] ### Step 2: Apply the Difference of Squares Using the difference of squares, we can simplify the numerator and denominator: \[ = \left(\frac{a^2 - \frac{1}{b^2}}{b^2 - \frac{1}{a^2}}\right)^{\frac{1}{x}} \] ### Step 3: Further Simplification Now, we can rewrite the numerator and denominator: \[ = \left(\frac{a^2b^2 - 1}{b^2a^2 - 1}\right)^{\frac{1}{x}} \] ### Step 4: Cancel Common Terms Since the numerator and denominator are the same, we can simplify: \[ = \left(\frac{a^2b^2 - 1}{b^2a^2 - 1}\right)^{\frac{1}{x}} = 1^{\frac{1}{x}} = 1 \] ### Step 5: Determine Conditions for Integer The expression is an integer if the base of the exponent is an integer. Therefore, we need to check the values of \(a\), \(b\), and \(x\) such that: \[ \frac{a^2b^2 - 1}{b^2a^2 - 1} \text{ is an integer} \] ### Step 6: Check Given Options Now we can substitute the values from the options provided: 1. **Option A:** \(a = 4, b = 2, x = 4\) \[ \frac{(4^2)(2^2) - 1}{(2^2)(4^2) - 1} = \frac{16 \cdot 4 - 1}{4 \cdot 16 - 1} = \frac{64 - 1}{64 - 1} = \frac{63}{63} = 1 \text{ (integer)} \] 2. **Option B:** \(a = 16, b = 2, x = 4\) \[ \frac{(16^2)(2^2) - 1}{(2^2)(16^2) - 1} = \frac{256 \cdot 4 - 1}{4 \cdot 256 - 1} = \frac{1024 - 1}{1024 - 1} = \frac{1023}{1023} = 1 \text{ (integer)} \] 3. **Option C:** \(a = 64, b = 2, x = 8\) \[ \frac{(64^2)(2^2) - 1}{(2^2)(64^2) - 1} = \frac{4096 \cdot 4 - 1}{4 \cdot 4096 - 1} = \frac{16384 - 1}{16384 - 1} = \frac{16383}{16383} = 1 \text{ (integer)} \] 4. **Option D:** \(a = 16, b = 4, x = 4\) \[ \frac{(16^2)(4^2) - 1}{(4^2)(16^2) - 1} = \frac{256 \cdot 16 - 1}{16 \cdot 256 - 1} = \frac{4096 - 1}{4096 - 1} = \frac{4095}{4095} = 1 \text{ (integer)} \] ### Conclusion The expression is an integer for all the given options.
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(1)/(x+a)+(1)/(x+b)=(1)/(x+a+b)+(1)/(x)

The expression ((x+(1)/(y))^(a)*(x-(1)/(y))^(b))/((y+(1)/(x))^(a)*(y-(1)/(x))^(b)) reduces to a.((x)/(y))^(a-b) b.((y)/(x))^(a-b)backslash c((x)/(y))^(a+b)d.((y)/(x))^(a+b)

Show that: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Solve: (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x)

Prove that: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x),a+b!=0

Simplify: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. On simplification (a^p/a^q)^(p+q) xx(a^q/a^r)^(q+r)xx(a^r/a^p)^(r+p) y...

    Text Solution

    |

  2. Expression ((a^x)/(a^y))^(x^2+xy+y^2)xx(a^y/a^z)^(y^2+yz+z^2)xx(a^z/a^...

    Text Solution

    |

  3. Expression ((a+1/b)^(1/x)(a-1/b)^(1/x))/((b+1/a)^(1/x)(b-1/a)^(1/x)) i...

    Text Solution

    |

  4. The value of x^d/(x^d + x^(d+b -a)+x^(d+c-a))+(x^d)/(x^d + x^(d+a-b)+x...

    Text Solution

    |

  5. If x=root3(a)-1/(root3(a)) then value of x^3 +3x is

    Text Solution

    |

  6. If a = 2 + 2^(1/3)+2^(2/3) then value of a^3-6a^2+6a is

    Text Solution

    |

  7. If a^(x)=b^(y)=c^(z) and abc = 1, then what is the value of xy + yz + ...

    Text Solution

    |

  8. Value of y = sqrt((a^(y/x))/(a(x/y))) xx sqrt((a(x/z))/(a(y/x))) xx ...

    Text Solution

    |

  9. If a^(m^n) = (a^(m))^(n) then which of the following relation is true ...

    Text Solution

    |

  10. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  11. Value of sqrt(4 + sqrt(15)) is

    Text Solution

    |

  12. If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

    Text Solution

    |

  13. Square root of 3/2 (x - 1) + sqrt(2x^2 - 7 x - 4) is

    Text Solution

    |

  14. Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

    Text Solution

    |

  15. Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

    Text Solution

    |

  16. Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x^4)) is

    Text Solution

    |

  17. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  18. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  19. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  20. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |