Home
Class 14
MATHS
Value of sqrt(4 + sqrt(15)) is...

Value of `sqrt(4 + sqrt(15))` is

A

`(sqrt(5) - sqrt(3))/(2)`

B

`(sqrt(5) - sqrt(3))/(sqrt2)`

C

`(sqrt(5) + sqrt(3))/(sqrt2)`

D

`(sqrt(5) + sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{4 + \sqrt{15}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{4 + \sqrt{15}} \] ### Step 2: Multiply and divide by 2 To simplify the expression, we can multiply and divide by 2: \[ \sqrt{4 + \sqrt{15}} = \sqrt{2 \cdot \frac{4 + \sqrt{15}}{2}} = \sqrt{2 \cdot (2 + \frac{\sqrt{15}}{2})} \] ### Step 3: Simplify the expression inside the square root Now, we can rewrite \( 4 + \sqrt{15} \) as: \[ \sqrt{2 \cdot (2 + \frac{\sqrt{15}}{2})} \] ### Step 4: Express in terms of squares Next, we can express \( 4 + \sqrt{15} \) in a form that resembles a perfect square: \[ 4 + \sqrt{15} = \left(\sqrt{5} + \sqrt{3}\right)^2 \] This is because: \[ (\sqrt{5} + \sqrt{3})^2 = 5 + 3 + 2\sqrt{15} = 8 + 2\sqrt{15} \] ### Step 5: Substitute back into the square root Now substituting back, we have: \[ \sqrt{4 + \sqrt{15}} = \sqrt{\left(\sqrt{5} + \sqrt{3}\right)^2} \] ### Step 6: Simplify the square root Taking the square root gives us: \[ \sqrt{4 + \sqrt{15}} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{2}} \] ### Final Result Thus, the value of \( \sqrt{4 + \sqrt{15}} \) is: \[ \frac{\sqrt{5} + \sqrt{3}}{\sqrt{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

What is the value of sqrt(8 - 2 sqrt(15)) ?

The value of sqrt(-4) sqrt(-4) is

If x=8 + 2sqrt(15) , then the value of sqrt(x) + 1/sqrt(x) is:

Find the value of 1/(sqrt(9) - sqrt(4)) .

What is the value of sqrt(7 + 4sqrt(3))?

What is the value of sqrt(7 + 4sqrt(3))?

The value of sqrt(9)/sqrt(4) is

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. If a^(m^n) = (a^(m))^(n) then which of the following relation is true ...

    Text Solution

    |

  2. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  3. Value of sqrt(4 + sqrt(15)) is

    Text Solution

    |

  4. If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

    Text Solution

    |

  5. Square root of 3/2 (x - 1) + sqrt(2x^2 - 7 x - 4) is

    Text Solution

    |

  6. Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

    Text Solution

    |

  7. Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

    Text Solution

    |

  8. Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x^4)) is

    Text Solution

    |

  9. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  10. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  11. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  12. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  13. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  14. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  15. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  16. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  17. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  18. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  19. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  20. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |