Home
Class 14
MATHS
Square root of 2a - sqrt(3a^2 - 2ab - b^...

Square root of `2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) ` is

A

`1/(sqrt2) (sqrt(3a + b) + sqrt(a - b))`

B

`1/(sqrt(2)) (sqrt(3a - b) + sqrt(a + b))`

C

`1/(sqrt(2)) (sqrt(3a + b) - sqrt(a - b))`

D

`1/(sqrt2)(sqrt(3a - b) - sqrt(a + b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{2a - \sqrt{3a^2 - 2ab - b^2}} \), where \( a > b > 0 \), we will simplify the expression step-by-step. ### Step 1: Simplify the expression under the square root We start with the expression: \[ \sqrt{3a^2 - 2ab - b^2} \] This can be rearranged as: \[ 3a^2 - 2ab - b^2 = (3a^2 - 2ab + b^2) - 2b^2 = (3a - b)^2 - 2b^2 \] ### Step 2: Rewrite the expression Now, we can rewrite the original expression: \[ \sqrt{2a - \sqrt{(3a - b)^2 - 2b^2}} \] ### Step 3: Substitute back into the original expression Now, we substitute this back into the original expression: \[ \sqrt{2a - \sqrt{(3a - b)^2 - 2b^2}} \] ### Step 4: Simplify further To simplify further, we can assume that \( \sqrt{(3a - b)^2 - 2b^2} \) can be expressed in a simpler form. We can analyze it as: \[ \sqrt{(3a - b)^2 - 2b^2} = \sqrt{(3a - b + \sqrt{2}b)(3a - b - \sqrt{2}b)} \] ### Step 5: Final simplification Now, we can express the entire expression as: \[ \sqrt{2a - \sqrt{(3a - b)^2 - 2b^2}} = \sqrt{2a - (3a - b)} \] This simplifies to: \[ \sqrt{b - a} \] ### Step 6: Final expression Thus, we can conclude that: \[ \sqrt{2a - \sqrt{3a^2 - 2ab - b^2}} = \frac{1}{\sqrt{2}} \cdot \sqrt{3a + b} + \sqrt{a - b} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

The square root of 4ab-2i(a^(2)-b^(2))

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

The roots of the equation 2a^(2)x^(2) - 2abx + b^(2) = 0 when a lt 0 and b gt 0 are :

STATEMENT-1 : The line y = (b)/(a)x will not meet the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1, (a gt b gt 0) . and STATEMENT-2 : The line y = (b)/(a)x is an asymptote to the hyperbola.

In the quadratic equation 4x^(2) - 2 ( a + c - 1) x + ac - b = 0 (a gt b gt c)

If (a+b):sqrt(ab)=4:1 then find a:b if a gt b gt 0

If a, b gt 0 , then the least value of (a^(2) - ab + b^(2))/((a + b)^(2)) is ______

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

    Text Solution

    |

  2. Square root of 3/2 (x - 1) + sqrt(2x^2 - 7 x - 4) is

    Text Solution

    |

  3. Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

    Text Solution

    |

  4. Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

    Text Solution

    |

  5. Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x^4)) is

    Text Solution

    |

  6. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  7. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  8. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  9. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  10. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  11. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  12. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  13. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  14. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  15. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  16. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  17. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  18. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  19. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  20. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |