Home
Class 14
MATHS
Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x...

Value of `sqrt(1 + x^2 + sqrt(1 + x^2 + x^4))` is

A

`(1)/(sqrt(2)) (sqrt(1 + x + x^2) + sqrt(1 - x + x^2))`

B

`1/(sqrt(2)) (sqrt(1 + x + x^2) - sqrt(1 - x + x^2))`

C

`1/(sqrt2)(sqrt(1 + x + x^2) - sqrt(1 + x - x^2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{1 + x^2 + \sqrt{1 + x^2 + x^4}} \), we will follow these steps: ### Step 1: Simplify the inner square root We start with the expression: \[ \sqrt{1 + x^2 + \sqrt{1 + x^2 + x^4}} \] First, we simplify the inner square root \( \sqrt{1 + x^2 + x^4} \). Notice that: \[ 1 + x^2 + x^4 = (x^2 + 1)^2 \] Thus, we can rewrite the inner square root: \[ \sqrt{1 + x^2 + x^4} = \sqrt{(x^2 + 1)^2} = x^2 + 1 \] ### Step 2: Substitute back into the expression Now we substitute this back into the original expression: \[ \sqrt{1 + x^2 + (x^2 + 1)} = \sqrt{1 + x^2 + x^2 + 1} = \sqrt{2 + 2x^2} \] ### Step 3: Factor out the common term We can factor out the 2 from the expression under the square root: \[ \sqrt{2(1 + x^2)} \] ### Step 4: Simplify the square root Using the property of square roots, we can simplify this further: \[ \sqrt{2(1 + x^2)} = \sqrt{2} \cdot \sqrt{1 + x^2} \] ### Final Result Thus, the value of \( \sqrt{1 + x^2 + \sqrt{1 + x^2 + x^4}} \) is: \[ \sqrt{2} \cdot \sqrt{1 + x^2} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

Evaluate (x^2 - sqrt(1 - x^2) )^4 + (x^2 + sqrt( 1- x^2) )^4

Integrate : (a) int (sqrt(1-x^2) + sqrt(1+x^2) )/( sqrt(1-x^4) dx,

If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)) ?

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

    Text Solution

    |

  2. Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

    Text Solution

    |

  3. Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x^4)) is

    Text Solution

    |

  4. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  5. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  6. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  7. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  8. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  9. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  10. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  11. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  12. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  13. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  14. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  15. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  16. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  17. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  18. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  19. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  20. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |