Home
Class 14
MATHS
Square root of x + y + z + 2sqrt(xy + yz...

Square root of `x + y + z + 2sqrt(xy + yz` is

A

`sqrt(x) + sqrt(y + z)`

B

`sqrt(x + y + z)`

C

`sqrt(x + y) + sqrt(z)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the square root of the expression \( x + y + z + 2\sqrt{xy + yz} \). ### Step-by-Step Solution: 1. **Identify the expression**: We start with the expression \( x + y + z + 2\sqrt{xy + yz} \). 2. **Rearranging the expression**: Notice that we can rearrange the expression to group terms that can be factored. We can write it as: \[ x + z + y + 2\sqrt{y(x + z)} \] 3. **Recognizing a perfect square**: The expression \( y + 2\sqrt{y(x + z)} \) can be recognized as a perfect square. We can rewrite it as: \[ (\sqrt{y} + \sqrt{x + z})^2 \] This is because \( (\sqrt{y})^2 + ( \sqrt{x + z})^2 + 2\sqrt{y}\sqrt{x + z} = y + (x + z) + 2\sqrt{y(x + z)} \). 4. **Taking the square root**: Now we can take the square root of the entire expression: \[ \sqrt{x + y + z + 2\sqrt{y(x + z)}} = \sqrt{(\sqrt{y} + \sqrt{x + z})^2} \] This simplifies to: \[ \sqrt{y} + \sqrt{x + z} \] 5. **Final expression**: Thus, the square root of the original expression is: \[ \sqrt{y} + \sqrt{x + z} \] ### Conclusion: The final answer is \( \sqrt{y} + \sqrt{x + z} \).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

The square root of (xy + xz - yz)^(2) - 4xyz (x -y) is _____

Tan ^ (- 1) (yz) / (x sqrt (x ^ (2) + y ^ (2) + z ^ (2))) + (tan ^ (- 1) (zx)) / (y sqrt ( x ^ (2) + y ^ (2) + z ^ (2))) + (tan ^ (- 1) (xy)) / (z sqrt (x ^ (2) + y ^ (2) + z ^ (2)))

Solve for x,y,z. xy + x + y = 23 xz + z + x = 41 yz + y + z = 27 .

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. Value of sqrt(28 - 6sqrt(3)) + sqrt(28 + 6sqrt(3)) is

    Text Solution

    |

  2. Value of sqrt(1 + x^2 + sqrt(1 + x^2 + x^4)) is

    Text Solution

    |

  3. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  4. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  5. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  6. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  7. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  8. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  9. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  10. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  11. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  12. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  13. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  14. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  15. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  16. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  17. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  18. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  19. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  20. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |