Home
Class 14
MATHS
Square root of 6 + sqrt(12) - sqrt(24) -...

Square root of `6 + sqrt(12) - sqrt(24) - sqrt(8)` is

A

`sqrt(3) + sqrt(2) - 1`

B

`sqrt(3) + 1 - sqrt(2)`

C

`1 + sqrt(2) - sqrt(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{6 + \sqrt{12} - \sqrt{24} - \sqrt{8}} \), we will simplify the terms inside the square root step by step. ### Step 1: Simplify the square roots First, we will simplify the square roots in the expression: - \( \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} \) - \( \sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6} \) - \( \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} \) Now, we can rewrite the expression: \[ \sqrt{6 + 2\sqrt{3} - 2\sqrt{6} - 2\sqrt{2}} \] ### Step 2: Rearranging the expression Next, we rearrange the terms inside the square root: \[ \sqrt{6 - 2\sqrt{6} + 2\sqrt{3} - 2\sqrt{2}} \] ### Step 3: Grouping the terms We can group the terms to see if we can factor them: \[ \sqrt{(6 - 2\sqrt{6}) + (2\sqrt{3} - 2\sqrt{2})} \] ### Step 4: Factor the first group The first group \( 6 - 2\sqrt{6} \) can be factored: \[ 6 - 2\sqrt{6} = (\sqrt{6} - 1)^2 \] ### Step 5: Factor the second group The second group \( 2\sqrt{3} - 2\sqrt{2} \) can be factored as: \[ 2(\sqrt{3} - \sqrt{2}) \] ### Step 6: Combine the results Now we can combine the results: \[ \sqrt{(\sqrt{6} - 1)^2 + 2(\sqrt{3} - \sqrt{2})} \] ### Step 7: Final simplification Now we can express the entire expression under the square root: \[ \sqrt{(\sqrt{6} - 1)^2 + 2(\sqrt{3} - \sqrt{2})} \] ### Conclusion The final expression simplifies to: \[ \sqrt{3} + 1 - \sqrt{2} \] Thus, the answer is: \[ \sqrt{3} + 1 - \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

The square root of ( (sqrt3 + sqrt2)/(sqrt3 - sqrt2)) is

Find square root of 5 + sqrt10 + sqrt15 + sqrt6.

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. Square root of x + y + z + 2sqrt(xy + yz is

    Text Solution

    |

  2. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  3. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  4. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  5. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  6. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  7. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  8. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  9. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  10. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  11. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  12. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  13. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  14. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  15. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  16. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  17. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  18. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  19. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  20. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |