Home
Class 14
MATHS
If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sq...

If `a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` then value of `sqrt(3a^2 - 5ab + 3b^2)` is

A

`5`

B

`17`

C

`sqrt(17)`

D

`17sqrt(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{3a^2 - 5ab + 3b^2} \) given \( a = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \) and \( b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \). ### Step 1: Calculate \( a \) and \( b \) First, we will rationalize \( a \) and \( b \). **For \( a \)**: \[ a = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2} \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6} \] Calculating the denominator: \[ 3 - 2 = 1 \] Thus, \[ a = 5 - 2\sqrt{6} \] **For \( b \)**: \[ b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{(\sqrt{3} + \sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2} \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] Calculating the denominator: \[ 3 - 2 = 1 \] Thus, \[ b = 5 + 2\sqrt{6} \] ### Step 2: Calculate \( a^2 \), \( b^2 \), and \( ab \) **Calculating \( a^2 \)**: \[ a^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6} \] **Calculating \( b^2 \)**: \[ b^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6} \] **Calculating \( ab \)**: \[ ab = (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1 \] ### Step 3: Substitute into the expression Now we substitute \( a^2 \), \( b^2 \), and \( ab \) into the expression \( 3a^2 - 5ab + 3b^2 \): \[ 3a^2 = 3(49 - 20\sqrt{6}) = 147 - 60\sqrt{6} \] \[ 3b^2 = 3(49 + 20\sqrt{6}) = 147 + 60\sqrt{6} \] \[ 5ab = 5 \cdot 1 = 5 \] Now, substituting these into the expression: \[ 3a^2 - 5ab + 3b^2 = (147 - 60\sqrt{6}) - 5 + (147 + 60\sqrt{6}) \] Combining like terms: \[ = 147 + 147 - 5 + (-60\sqrt{6} + 60\sqrt{6}) = 294 - 5 = 289 \] ### Step 4: Take the square root Finally, we find: \[ \sqrt{3a^2 - 5ab + 3b^2} = \sqrt{289} = 17 \] ### Final Answer The value of \( \sqrt{3a^2 - 5ab + 3b^2} \) is \( 17 \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) , then value of a^(2) + b^(2) is

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then find a^(2)+b^(2)-5ab

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

if a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)),b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

    Text Solution

    |

  2. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  3. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  4. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  5. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  6. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  7. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  8. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  9. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  10. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  11. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  12. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  13. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  14. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  15. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  16. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  17. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  18. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  19. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  20. If x/y = y/z = z/w then (x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(...

    Text Solution

    |