Home
Class 14
MATHS
Simplest form of ((sqrt(26 - 15sqrt(3))...

Simplest form of `((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2` is

A

3

B

9

C

`1/9`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{\sqrt{26 - 15\sqrt{3}}}{5\sqrt{2} - \sqrt{38 + 5\sqrt{3}}}\right)^2\), we will follow these steps: ### Step 1: Simplify the Numerator We start with the numerator \(\sqrt{26 - 15\sqrt{3}}\). We can express \(26 - 15\sqrt{3}\) in a different form. Assume \(26 - 15\sqrt{3} = (\sqrt{a} - \sqrt{b})^2\). Expanding this gives us: \[ a + b - 2\sqrt{ab} = 26 - 15\sqrt{3} \] From this, we can set up the equations: 1. \(a + b = 26\) 2. \(-2\sqrt{ab} = -15\sqrt{3}\) → \(2\sqrt{ab} = 15\sqrt{3}\) → \(\sqrt{ab} = \frac{15\sqrt{3}}{2}\) → \(ab = \left(\frac{15\sqrt{3}}{2}\right)^2 = \frac{225 \cdot 3}{4} = \frac{675}{4}\) Now we need to solve the system of equations: \[ a + b = 26 \] \[ ab = \frac{675}{4} \] ### Step 2: Solve for \(a\) and \(b\) Let \(a\) and \(b\) be the roots of the quadratic equation \(x^2 - (a+b)x + ab = 0\): \[ x^2 - 26x + \frac{675}{4} = 0 \] Multiplying through by 4 to eliminate the fraction: \[ 4x^2 - 104x + 675 = 0 \] Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{104 \pm \sqrt{(-104)^2 - 4 \cdot 4 \cdot 675}}{2 \cdot 4} \] Calculating the discriminant: \[ 104^2 = 10816 \] \[ 4 \cdot 4 \cdot 675 = 10800 \] \[ b^2 - 4ac = 10816 - 10800 = 16 \] Thus: \[ x = \frac{104 \pm 4}{8} = \frac{108}{8} = 13.5 \quad \text{or} \quad \frac{100}{8} = 12.5 \] So, \(a = 13.5\) and \(b = 12.5\) or vice versa. ### Step 3: Rewrite the Numerator Thus, we can write: \[ \sqrt{26 - 15\sqrt{3}} = \sqrt{(\sqrt{13.5} - \sqrt{12.5})^2} = \sqrt{13.5} - \sqrt{12.5} \] ### Step 4: Simplify the Denominator Next, we simplify the denominator \(5\sqrt{2} - \sqrt{38 + 5\sqrt{3}}\). Assume \(38 + 5\sqrt{3} = (\sqrt{c} + \sqrt{d})^2\). Expanding gives: \[ c + d + 2\sqrt{cd} = 38 + 5\sqrt{3} \] Setting up the equations: 1. \(c + d = 38\) 2. \(2\sqrt{cd} = 5\sqrt{3}\) → \(\sqrt{cd} = \frac{5\sqrt{3}}{2}\) → \(cd = \left(\frac{5\sqrt{3}}{2}\right)^2 = \frac{75}{4}\) ### Step 5: Solve for \(c\) and \(d\) Using the same method as before, we can find \(c\) and \(d\): \[ x^2 - 38x + \frac{75}{4} = 0 \] Multiplying through by 4: \[ 4x^2 - 152x + 75 = 0 \] Calculating the discriminant: \[ (-152)^2 - 4 \cdot 4 \cdot 75 = 23104 - 1200 = 21904 \] Thus: \[ x = \frac{152 \pm \sqrt{21904}}{8} \] Calculating \(\sqrt{21904} = 148\): \[ x = \frac{152 \pm 148}{8} \] This gives us roots \(x = 37.5\) and \(x = 0.5\). ### Step 6: Rewrite the Denominator Thus: \[ \sqrt{38 + 5\sqrt{3}} = \sqrt{(\sqrt{37.5} + \sqrt{0.5})^2} = \sqrt{37.5} + \sqrt{0.5} \] ### Step 7: Combine the Results Now we can rewrite the original expression: \[ \frac{\sqrt{13.5} - \sqrt{12.5}}{5\sqrt{2} - (\sqrt{37.5} + \sqrt{0.5})} \] ### Step 8: Square the Result Finally, we square the entire expression: \[ \left(\frac{\sqrt{13.5} - \sqrt{12.5}}{5\sqrt{2} - (\sqrt{37.5} + \sqrt{0.5})}\right)^2 \] ### Final Result After simplification, we find: \[ \left(\frac{\sqrt{13.5} - \sqrt{12.5}}{5\sqrt{2} - (\sqrt{37.5} + \sqrt{0.5})}\right)^2 = \frac{1}{3} \] Thus, the simplest form of the expression is \(\frac{1}{3}\).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

Show that the square to (sqrt(26-15sqrt(3)))/(5sqrt(2)-sqrt(38+5sqrt(3))) is a rational number.

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt((2)/(5))+sqrt((3)/(3)))(sqrt(2)+sqrt(3))

1/(sqrt(2)+sqrt(3)+sqrt(5))+1/(sqrt(2)+sqrt(3)-sqrt(5))

(sqrt(5)-2)(sqrt(3)-sqrt(5))

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  2. If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt...

    Text Solution

    |

  3. Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 ...

    Text Solution

    |

  4. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  5. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  6. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  7. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  8. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  9. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  10. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  11. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  12. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  13. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  14. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  15. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  16. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  17. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  18. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  19. If x/y = y/z = z/w then (x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(...

    Text Solution

    |

  20. Which of the following quantity is integer ?

    Text Solution

    |