Home
Class 14
MATHS
Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sq...

Value of `1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3))` is

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\sqrt{11 - 2\sqrt{30}}} - \frac{3}{\sqrt{7 - 2\sqrt{10}}} - \frac{4}{\sqrt{8 + 4\sqrt{3}}} \), we will simplify each term step by step. ### Step 1: Simplify \( \sqrt{11 - 2\sqrt{30}} \) We can express \( 11 \) as \( \sqrt{6}^2 + \sqrt{5}^2 \) and \( 2\sqrt{30} \) as \( 2\sqrt{6 \cdot 5} \). Thus, we can rewrite: \[ \sqrt{11 - 2\sqrt{30}} = \sqrt{(\sqrt{6} - \sqrt{5})^2} \] Taking the square root gives us: \[ \sqrt{11 - 2\sqrt{30}} = \sqrt{6} - \sqrt{5} \] ### Step 2: Simplify \( \sqrt{7 - 2\sqrt{10}} \) We can express \( 7 \) as \( \sqrt{5}^2 + \sqrt{2}^2 \) and \( 2\sqrt{10} \) as \( 2\sqrt{5 \cdot 2} \). Thus, we can rewrite: \[ \sqrt{7 - 2\sqrt{10}} = \sqrt{(\sqrt{5} - \sqrt{2})^2} \] Taking the square root gives us: \[ \sqrt{7 - 2\sqrt{10}} = \sqrt{5} - \sqrt{2} \] ### Step 3: Simplify \( \sqrt{8 + 4\sqrt{3}} \) We can express \( 8 \) as \( \sqrt{6}^2 + \sqrt{2}^2 \) and \( 4\sqrt{3} \) as \( 2 \cdot 2\sqrt{3} \). Thus, we can rewrite: \[ \sqrt{8 + 4\sqrt{3}} = \sqrt{(\sqrt{6} + \sqrt{2})^2} \] Taking the square root gives us: \[ \sqrt{8 + 4\sqrt{3}} = \sqrt{6} + \sqrt{2} \] ### Step 4: Substitute back into the original expression Now substituting back into the original expression: \[ \frac{1}{\sqrt{6} - \sqrt{5}} - \frac{3}{\sqrt{5} - \sqrt{2}} - \frac{4}{\sqrt{6} + \sqrt{2}} \] ### Step 5: Rationalize each term 1. **First term**: Multiply numerator and denominator by \( \sqrt{6} + \sqrt{5} \): \[ \frac{1(\sqrt{6} + \sqrt{5})}{(\sqrt{6} - \sqrt{5})(\sqrt{6} + \sqrt{5})} = \frac{\sqrt{6} + \sqrt{5}}{1} = \sqrt{6} + \sqrt{5} \] 2. **Second term**: Multiply numerator and denominator by \( \sqrt{5} + \sqrt{2} \): \[ \frac{-3(\sqrt{5} + \sqrt{2})}{(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})} = \frac{-3(\sqrt{5} + \sqrt{2})}{3} = -(\sqrt{5} + \sqrt{2}) \] 3. **Third term**: Multiply numerator and denominator by \( \sqrt{6} - \sqrt{2} \): \[ \frac{-4(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{-4(\sqrt{6} - \sqrt{2})}{4} = -(\sqrt{6} - \sqrt{2}) \] ### Step 6: Combine all terms Now we combine all the simplified terms: \[ (\sqrt{6} + \sqrt{5}) - (\sqrt{5} + \sqrt{2}) - (\sqrt{6} - \sqrt{2}) \] This simplifies to: \[ \sqrt{6} + \sqrt{5} - \sqrt{5} - \sqrt{2} - \sqrt{6} + \sqrt{2} \] ### Step 7: Final simplification All terms cancel out: \[ \sqrt{6} - \sqrt{6} + \sqrt{5} - \sqrt{5} + \sqrt{2} - \sqrt{2} = 0 \] Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(11-2sqrt(30)))-(3)/(sqrt(7-2sqrt(10)))-(4)/(sqrt(8+4sqrt(3)))

Simplify: (1)/(sqrt(11-2sqrt(30)))*(3)/(sqrt(7-2sqrt(10)))(4)/(sqrt(8+4sqrt(3)))

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  2. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  3. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  4. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  5. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  6. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  7. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  8. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  9. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  10. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  11. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  12. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  13. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  14. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  15. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  16. If x/y = y/z = z/w then (x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(...

    Text Solution

    |

  17. Which of the following quantity is integer ?

    Text Solution

    |

  18. What is the real value of (256)^(0.16)xx(16)^(0.18) ?

    Text Solution

    |

  19. 2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

    Text Solution

    |

  20. If x = (2ab)/(b^2+1) then value of (sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sq...

    Text Solution

    |