Home
Class 14
MATHS
If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqr...

If `a= sqrt((sqrt5+1)/(sqrt5-1))` then `sqrt(a^2-a-1)` is equal to _____.

A

A) 5

B

B) `sqrt5`

C

C) 0

D

D) 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given for \( a \): \[ a = \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5} - 1}} \] ### Step 1: Rationalize the denominator To simplify \( a \), we will rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator, which is \( \sqrt{5} + 1 \): \[ a = \sqrt{\frac{(\sqrt{5} + 1)(\sqrt{5} + 1)}{(\sqrt{5} - 1)(\sqrt{5} + 1)}} \] ### Step 2: Simplify the numerator and denominator Calculating the numerator: \[ (\sqrt{5} + 1)(\sqrt{5} + 1) = (\sqrt{5})^2 + 2(\sqrt{5})(1) + (1)^2 = 5 + 2\sqrt{5} + 1 = 6 + 2\sqrt{5} \] Calculating the denominator using the difference of squares: \[ (\sqrt{5} - 1)(\sqrt{5} + 1) = (\sqrt{5})^2 - (1)^2 = 5 - 1 = 4 \] Thus, we have: \[ a = \sqrt{\frac{6 + 2\sqrt{5}}{4}} = \sqrt{\frac{6 + 2\sqrt{5}}{4}} = \frac{\sqrt{6 + 2\sqrt{5}}}{2} \] ### Step 3: Find \( a^2 \) Now we calculate \( a^2 \): \[ a^2 = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2} \] ### Step 4: Calculate \( a^2 - a - 1 \) Now we need to compute \( a^2 - a - 1 \): \[ a^2 - a - 1 = \frac{3 + \sqrt{5}}{2} - \frac{1}{2} - 1 \] Finding a common denominator: \[ = \frac{3 + \sqrt{5}}{2} - \frac{1}{2} - \frac{2}{2} = \frac{3 + \sqrt{5} - 1 - 2}{2} = \frac{\sqrt{5}}{2} \] ### Step 5: Calculate \( \sqrt{a^2 - a - 1} \) Now we find \( \sqrt{a^2 - a - 1} \): \[ \sqrt{a^2 - a - 1} = \sqrt{\frac{\sqrt{5}}{2}} = \frac{\sqrt{\sqrt{5}}}{\sqrt{2}} = \frac{5^{1/4}}{\sqrt{2}} \] ### Final Answer The final answer for \( \sqrt{a^2 - a - 1} \) is: \[ \frac{5^{1/4}}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(sqrt2 + 1)/sqrt5

(sqrt(5)-1)/(sqrt(5)+1)+(sqrt(5)+1)/(sqrt(5)-1)

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

3 - (3 + sqrt5)/(4) - (1)/(3 + sqrt5) is equal to

If x=sqrt((sqrt(5)+1)/(sqrt(5)-1)), then the value of x= of 5x^(2)-5x-1 is

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  2. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  3. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  4. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  5. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  6. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  7. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  8. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  9. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  10. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  11. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  12. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  13. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  14. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  15. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  16. If x/y = y/z = z/w then (x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(...

    Text Solution

    |

  17. Which of the following quantity is integer ?

    Text Solution

    |

  18. What is the real value of (256)^(0.16)xx(16)^(0.18) ?

    Text Solution

    |

  19. 2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

    Text Solution

    |

  20. If x = (2ab)/(b^2+1) then value of (sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sq...

    Text Solution

    |