Home
Class 14
MATHS
If x/y = y/z = z/w then (x^m+y^m +z^m+w...

If `x/y = y/z = z/w ` then `(x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(-m))` is equals to -

A

0

B

1

C

`(xyzw)^m`

D

`(xyzw)^(m//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: 1. **Given**: \( \frac{x}{y} = \frac{y}{z} = \frac{z}{w} \) Let's denote this common ratio as \( k \). Therefore, we can express \( x, y, z, \) and \( w \) in terms of \( k \): \[ x = ky, \quad y = kz, \quad z = kw \] From \( y = kz \), we can express \( z \) in terms of \( w \): \[ y = kw \quad \Rightarrow \quad z = \frac{y}{k} = \frac{kw}{k} = w \] Now substituting back, we have: \[ z = w, \quad y = kw, \quad x = k^2w \] 2. **Substituting values**: Now we can substitute these expressions into the original equation we need to evaluate: \[ \frac{x^m + y^m + z^m + w^m}{x^{-m} + y^{-m} + z^{-m} + w^{-m}} \] Substituting for \( x, y, z, \) and \( w \): \[ = \frac{(k^2w)^m + (kw)^m + w^m + w^m}{(k^2w)^{-m} + (kw)^{-m} + w^{-m} + w^{-m}} \] Simplifying the numerator: \[ = \frac{k^{2m}w^m + k^mw^m + w^m + w^m}{k^{-2m}w^{-m} + k^{-m}w^{-m} + w^{-m} + w^{-m}} \] \[ = \frac{(k^{2m} + k^m + 2)w^m}{(k^{-2m} + k^{-m} + 2)w^{-m}} \] 3. **Simplifying further**: We can factor out \( w^m \) from the numerator and \( w^{-m} \) from the denominator: \[ = \frac{(k^{2m} + k^m + 2)}{(k^{-2m} + k^{-m} + 2)} \cdot w^{m - (-m)} \] \[ = w^{2m} \cdot \frac{(k^{2m} + k^m + 2)}{(k^{-2m} + k^{-m} + 2)} \] 4. **Finding the ratio**: Now, we need to simplify the fraction: \[ = w^{2m} \cdot \frac{(k^{2m} + k^m + 2)}{\frac{1}{k^{2m}} + \frac{1}{k^m} + 2} \] Multiplying the numerator and denominator by \( k^{2m} \): \[ = w^{2m} \cdot \frac{k^{2m}(k^{2m} + k^m + 2)}{1 + k^m + 2k^{2m}} \] 5. **Final simplification**: Notice that the expression simplifies to a constant value: \[ = w^{2m} \cdot k^{2m} \cdot \frac{k^{2m} + k^m + 2}{1 + k^m + 2k^{2m}} \] Since \( k^{2m} + k^m + 2 \) and \( 1 + k^m + 2k^{2m} \) are symmetric in terms of \( k \), the overall expression simplifies to \( -1 \) when evaluated. Thus, the final answer is: \[ \frac{x^m + y^m + z^m + w^m}{x^{-m} + y^{-m} + z^{-m} + w^{-m}} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(x^(m))/(y^(m))=(y/x)^(-m)

Given that x,y,z are positive real such that xyz=32. If the minimum value of x^(2)+4xy+4y^(2)+2z^(2) is equal m, then the value of m/16 is.

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+l) and z=a^(l+m), prove that x^(m)y^(n)z^(l)=x^(n)y^(l)z^(m)

Find x + y + z + w

If the two lines (x-1)/(-3) = (y-2)/(2m) = (z-3)/2 and (x-1)/(3m) = (y-5)/1 = (z-6)/(-5) are mutually perpendicular , then : m

If x+y+z+w=0 then value of x^(3)+y^(3)+z^(3)+w^(3)+3(y+z)(z+x)(x+y)=

If (x -y +z) : (y - z + 2w) : (2x + z-w) =2: 3:5, then (3x + 3z - 2w): w=?

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  2. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  3. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  4. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  5. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  6. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  7. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  8. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  9. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  10. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  11. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  12. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  13. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  14. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  15. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  16. If x/y = y/z = z/w then (x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(...

    Text Solution

    |

  17. Which of the following quantity is integer ?

    Text Solution

    |

  18. What is the real value of (256)^(0.16)xx(16)^(0.18) ?

    Text Solution

    |

  19. 2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

    Text Solution

    |

  20. If x = (2ab)/(b^2+1) then value of (sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sq...

    Text Solution

    |