Home
Class 14
MATHS
If l cos^(2) theta + m sin^(2) theta = (...

If `l cos^(2) theta + m sin^(2) theta = (cos^(2) theta ("cosec"^(2) theta+1)/("cosec"^(2) theta -1))` then what is the value of `tan^(2) theta`.

A

`(l-2)/(m-1)`

B

`(l-1)/(2-m)`

C

`(l-2)/(l-m)`

D

`(2-l)/(1-m)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( l \cos^2 \theta + m \sin^2 \theta = \frac{\cos^2 \theta \left( \csc^2 \theta + 1 \right)}{\csc^2 \theta - 1} \), we will follow these steps: ### Step 1: Rewrite the Right-Hand Side We start with the right-hand side (RHS) of the equation: \[ \frac{\cos^2 \theta \left( \csc^2 \theta + 1 \right)}{\csc^2 \theta - 1} \] Recall that \( \csc^2 \theta = \frac{1}{\sin^2 \theta} \). Thus, we can rewrite the RHS as: \[ \frac{\cos^2 \theta \left( \frac{1}{\sin^2 \theta} + 1 \right)}{\frac{1}{\sin^2 \theta} - 1} \] ### Step 2: Simplify the Expression Now, simplify the numerator and denominator: - The numerator becomes: \[ \cos^2 \theta \left( \frac{1 + \sin^2 \theta}{\sin^2 \theta} \right) = \frac{\cos^2 \theta (1 + \sin^2 \theta)}{\sin^2 \theta} \] - The denominator becomes: \[ \frac{1 - \sin^2 \theta}{\sin^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta} \] ### Step 3: Combine the Fractions Thus, the RHS can be rewritten as: \[ \frac{\frac{\cos^2 \theta (1 + \sin^2 \theta)}{\sin^2 \theta}}{\frac{\cos^2 \theta}{\sin^2 \theta}} = \frac{\cos^2 \theta (1 + \sin^2 \theta)}{\cos^2 \theta} \] This simplifies to: \[ 1 + \sin^2 \theta \] ### Step 4: Equate Both Sides Now we equate both sides: \[ l \cos^2 \theta + m \sin^2 \theta = 1 + \sin^2 \theta \] ### Step 5: Rearranging the Equation Rearranging gives us: \[ l \cos^2 \theta + m \sin^2 \theta - \sin^2 \theta = 1 \] This can be expressed as: \[ l \cos^2 \theta + (m - 1) \sin^2 \theta = 1 \] ### Step 6: Divide by \( \cos^2 \theta \) Now, divide the entire equation by \( \cos^2 \theta \): \[ l + (m - 1) \tan^2 \theta = \sec^2 \theta \] Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \), we can rewrite this as: \[ l + (m - 1) \tan^2 \theta = 1 + \tan^2 \theta \] ### Step 7: Rearranging for \( \tan^2 \theta \) Rearranging gives: \[ (m - 1) \tan^2 \theta - \tan^2 \theta = 1 - l \] Factoring out \( \tan^2 \theta \): \[ (m - 2) \tan^2 \theta = 1 - l \] ### Step 8: Solve for \( \tan^2 \theta \) Finally, we can solve for \( \tan^2 \theta \): \[ \tan^2 \theta = \frac{1 - l}{m - 2} \] ### Final Answer Thus, the value of \( \tan^2 \theta \) is: \[ \tan^2 \theta = \frac{l - 1}{2 - m} \] ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cosec^2 theta -1), 0^@ lt theta lt 90^@ , then tan theta is equal to

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is

The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

The value of (1+ cos theta)(1- cos theta) "cosec"^(2) theta =

What is the value of (sin^(4)theta-cos^(4)theta+1)"cosec"^(2)theta ?

( 1 + cos theta) ( 1 - cos theta ) cosec^2 theta =

Prove that cos^2 theta cosec^2 theta+sin^2 theta=cosec^@ theta

(sqrt((cosec^(2)theta-1)))/(cosec theta)=cos theta

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. Expression (tan x)/(1 + sec x)- (tan x)/(1 -sec x) is equal to:

    Text Solution

    |

  2. Expression (sin^(4) x - cos^(4)x +1)"cosec"^(2)x is equal to:

    Text Solution

    |

  3. If l cos^(2) theta + m sin^(2) theta = (cos^(2) theta ("cosec"^(2) the...

    Text Solution

    |

  4. Assertion (A): sec^(2) 23^(@) - tan^(2) 23^(@) =1 Reason ( R): For e...

    Text Solution

    |

  5. If sin x cos x = 1//2, then what is the value of sin x - cos x ?

    Text Solution

    |

  6. If tan^2 y cosec^2 x – 1 = tan^2 y, then which one of the following is...

    Text Solution

    |

  7. If cosx/(1 + cosec x)+ (cosx)/(cosecx -1) =2, which one of the followi...

    Text Solution

    |

  8. If sin x + sin y = a and cos x + cos y = b, what is sin x.sin y + cos ...

    Text Solution

    |

  9. If a is an angle in first quadrant such that "cosec"^(4) alpha = 17+"c...

    Text Solution

    |

  10. If x + (1//x) = 2 cos alpha, then what is the value of x^2 + (1//x^2) ...

    Text Solution

    |

  11. If sin theta + cos theta = a and sec theta + "cosec" theta = b, then w...

    Text Solution

    |

  12. Among given values of theta which one satisfies the equation (cos thet...

    Text Solution

    |

  13. If 7 cos^2 theta +3 sin^2 theta =4 and 0 lt theta lt pi//2, what is th...

    Text Solution

    |

  14. What is the value of , [(1-sin^(2)theta)sec^(2)theta +tan^(2)theta](co...

    Text Solution

    |

  15. What is the value of sin^(2) 15^(@) + sin^(2) 20^(@) + sin^(2)25^(@) +...

    Text Solution

    |

  16. What is sqrt((1 + sin theta)/(1 -sintheta)) equal to ?

    Text Solution

    |

  17. If theta^(@) lt theta lt 90^(@) and (sin theta)/(cos theta) + (cos the...

    Text Solution

    |

  18. If sin 3 theta = cos (theta - 2 ^(@)) where 3 theta and (theta - 2 ^(@...

    Text Solution

    |

  19. What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2...

    Text Solution

    |

  20. If sin^(4)x + sin^(2) x =1, then the value of cot^(4)x + cot^(2)x is:

    Text Solution

    |