Home
Class 14
MATHS
Among given values of theta which one sa...

Among given values of `theta` which one satisfies the equation `(cos theta)/(1- sin theta) -(cos theta)/(1 + sin theta) =2` ?

A

`pi/2`

B

`pi/3`

C

`pi/4`

D

`pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos \theta}{1 - \sin \theta} - \frac{\cos \theta}{1 + \sin \theta} = 2, \] we will follow these steps: ### Step 1: Combine the fractions on the left-hand side We can combine the two fractions by finding a common denominator. The common denominator is \((1 - \sin \theta)(1 + \sin \theta)\). Thus, we rewrite the left-hand side: \[ \frac{\cos \theta (1 + \sin \theta) - \cos \theta (1 - \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)}. \] ### Step 2: Simplify the numerator Now, simplify the numerator: \[ \cos \theta (1 + \sin \theta) - \cos \theta (1 - \sin \theta) = \cos \theta + \cos \theta \sin \theta - \cos \theta + \cos \theta \sin \theta = 2 \cos \theta \sin \theta. \] ### Step 3: Substitute back into the equation Now, substituting back into the equation gives us: \[ \frac{2 \cos \theta \sin \theta}{(1 - \sin \theta)(1 + \sin \theta)} = 2. \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ 2 \cos \theta \sin \theta = 2(1 - \sin^2 \theta). \] ### Step 5: Use the Pythagorean identity Using the identity \(1 - \sin^2 \theta = \cos^2 \theta\), we rewrite the equation: \[ 2 \cos \theta \sin \theta = 2 \cos^2 \theta. \] ### Step 6: Divide by 2 Dividing both sides by 2 simplifies to: \[ \cos \theta \sin \theta = \cos^2 \theta. \] ### Step 7: Rearranging the equation Rearranging gives: \[ \cos \theta \sin \theta - \cos^2 \theta = 0. \] ### Step 8: Factor out \(\cos \theta\) Factoring out \(\cos \theta\) gives: \[ \cos \theta (\sin \theta - \cos \theta) = 0. \] ### Step 9: Set each factor to zero This gives us two cases: 1. \(\cos \theta = 0\) 2. \(\sin \theta - \cos \theta = 0\) or \(\sin \theta = \cos \theta\). ### Step 10: Solve for \(\theta\) 1. From \(\cos \theta = 0\), we have \(\theta = \frac{\pi}{2} + n\pi\) for \(n \in \mathbb{Z}\). 2. From \(\sin \theta = \cos \theta\), we have \(\tan \theta = 1\), which gives \(\theta = \frac{\pi}{4} + n\pi\) for \(n \in \mathbb{Z}\). ### Conclusion Among the given values of \(\theta\), the one that satisfies the equation is \(\theta = \frac{\pi}{4}\) (which corresponds to 45 degrees). ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

((sin theta+cos theta-1)/(sin theta-cos theta+1))(1+sin theta) =

Find the general value of theta which satisfies the equation (cos theta+i sin theta)(cos2 theta+i sin2 theta)......(cos n theta+i sin n theta)=1

prove that (cos theta)/(1-sin theta)+(cos theta)/(1+sin theta)=(2)/(cos theta)

(1 + sin theta-cos theta) / (1 + sin theta + cos theta)

(sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)=2cos ec theta

cos theta/(1+sin theta)=(1-sin theta)/cos theta

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) =

The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)/(2) is

The value of theta [0^(@) lt theta lt 90^(@)] , for which (cos theta)/(1-sin theta ) + (cos theta)/(1+ sin theta) =4 , is:

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. If x + (1//x) = 2 cos alpha, then what is the value of x^2 + (1//x^2) ...

    Text Solution

    |

  2. If sin theta + cos theta = a and sec theta + "cosec" theta = b, then w...

    Text Solution

    |

  3. Among given values of theta which one satisfies the equation (cos thet...

    Text Solution

    |

  4. If 7 cos^2 theta +3 sin^2 theta =4 and 0 lt theta lt pi//2, what is th...

    Text Solution

    |

  5. What is the value of , [(1-sin^(2)theta)sec^(2)theta +tan^(2)theta](co...

    Text Solution

    |

  6. What is the value of sin^(2) 15^(@) + sin^(2) 20^(@) + sin^(2)25^(@) +...

    Text Solution

    |

  7. What is sqrt((1 + sin theta)/(1 -sintheta)) equal to ?

    Text Solution

    |

  8. If theta^(@) lt theta lt 90^(@) and (sin theta)/(cos theta) + (cos the...

    Text Solution

    |

  9. If sin 3 theta = cos (theta - 2 ^(@)) where 3 theta and (theta - 2 ^(@...

    Text Solution

    |

  10. What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2...

    Text Solution

    |

  11. If sin^(4)x + sin^(2) x =1, then the value of cot^(4)x + cot^(2)x is:

    Text Solution

    |

  12. If x cos theta + y sin theta =2 and x cos theta - y sin theta =0, then...

    Text Solution

    |

  13. Expression sin A (1 + tan A) + cos A(1+ cot A) is equal to:

    Text Solution

    |

  14. If 0^(@) lt theta lt 90^(@) and cos^(2) theta - sin^(2) theta = 1/2,th...

    Text Solution

    |

  15. If 3 sin theta + 4 cos theta = 5, then 3 cos theta - 4 sin theta is eq...

    Text Solution

    |

  16. (1-sinAcosA)/(cosA(secA-cosecA)).(sin^(2)A-cos^(2)A)/(sin^(3)A+cos^(3)...

    Text Solution

    |

  17. For 0^(@) lt theta lt 90^(@) which of the following expression is of t...

    Text Solution

    |

  18. If a cos theta - b sin theta =c, then prove that a sin theta + b cos t...

    Text Solution

    |

  19. Expression tan^(2)alpha + cot^(2)alpha is:

    Text Solution

    |

  20. Find maximum value of sin^(8)theta+cos^(14)theta.

    Text Solution

    |