Home
Class 14
MATHS
If sin^(4)x + sin^(2) x =1, then the val...

If `sin^(4)x + sin^(2) x =1`, then the value of `cot^(4)x + cot^(2)x` is:

A

`cos^(2) x`

B

`sin^(2)x`

C

`tan^(2)x`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^4 x + \sin^2 x = 1 \) and find the value of \( \cot^4 x + \cot^2 x \), we can follow these steps: ### Step 1: Substitute \( y = \sin^2 x \) Let \( y = \sin^2 x \). Then the equation becomes: \[ y^2 + y = 1 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ y^2 + y - 1 = 0 \] ### Step 3: Solve the quadratic equation We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = 1, c = -1 \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 4: Find the positive root Since \( y = \sin^2 x \) must be non-negative, we take the positive root: \[ y = \frac{-1 + \sqrt{5}}{2} \] ### Step 5: Find \( \cot^2 x \) Recall that \( \cot^2 x = \frac{\cos^2 x}{\sin^2 x} = \frac{1 - \sin^2 x}{\sin^2 x} \): \[ \cot^2 x = \frac{1 - y}{y} = \frac{1 - \frac{-1 + \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}} = \frac{\frac{3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}} = \frac{3 - \sqrt{5}}{-1 + \sqrt{5}} \] ### Step 6: Simplify \( \cot^2 x \) To simplify \( \cot^2 x \), we multiply the numerator and denominator by the conjugate of the denominator: \[ \cot^2 x = \frac{(3 - \sqrt{5})(-1 - \sqrt{5})}{(-1 + \sqrt{5})(-1 - \sqrt{5})} = \frac{(-3 - 3\sqrt{5} + \sqrt{5} + 5)}{1 - 5} = \frac{2 - 2\sqrt{5}}{-4} = \frac{1 - \sqrt{5}}{-2} \] ### Step 7: Find \( \cot^4 x + \cot^2 x \) Now, we need to find \( \cot^4 x + \cot^2 x \): Let \( z = \cot^2 x \), then: \[ z^2 + z = \left(\frac{1 - \sqrt{5}}{-2}\right)^2 + \frac{1 - \sqrt{5}}{-2} \] ### Step 8: Substitute and simplify Calculating \( z^2 \): \[ z^2 = \left(\frac{1 - \sqrt{5}}{-2}\right)^2 = \frac{(1 - \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Now adding \( z \): \[ z^2 + z = \frac{3 - \sqrt{5}}{2} + \frac{1 - \sqrt{5}}{-2} = \frac{3 - \sqrt{5} + 1 - \sqrt{5}}{-2} = \frac{4 - 2\sqrt{5}}{-2} = -2 + \sqrt{5} \] ### Final Result Thus, the value of \( \cot^4 x + \cot^2 x \) is: \[ \cot^4 x + \cot^2 x = -2 + \sqrt{5} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If sin^(2)x+sin^(2)y=1 , then what is the value of cot(x+y) ?

If sin x+sin^(2)x=1 then the value of cos^(2)+cos^(4)x+cot^(4)x-cot^(2)x is

If sin x+sin^(2)x=1, then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If sin x+sin^(2)x=1 then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If cot^(4)x-cot^(2)x=1 , then the value of cos^(4)x+cos^(2)x is ________

Write the value of sin(cot^(-1)x) .

The value of cot(sin^(-1)x) is :

The value of cot(sin^(-1) x ) is :

The value of sec x+2cot2x sin x lies in

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. If sin 3 theta = cos (theta - 2 ^(@)) where 3 theta and (theta - 2 ^(@...

    Text Solution

    |

  2. What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2...

    Text Solution

    |

  3. If sin^(4)x + sin^(2) x =1, then the value of cot^(4)x + cot^(2)x is:

    Text Solution

    |

  4. If x cos theta + y sin theta =2 and x cos theta - y sin theta =0, then...

    Text Solution

    |

  5. Expression sin A (1 + tan A) + cos A(1+ cot A) is equal to:

    Text Solution

    |

  6. If 0^(@) lt theta lt 90^(@) and cos^(2) theta - sin^(2) theta = 1/2,th...

    Text Solution

    |

  7. If 3 sin theta + 4 cos theta = 5, then 3 cos theta - 4 sin theta is eq...

    Text Solution

    |

  8. (1-sinAcosA)/(cosA(secA-cosecA)).(sin^(2)A-cos^(2)A)/(sin^(3)A+cos^(3)...

    Text Solution

    |

  9. For 0^(@) lt theta lt 90^(@) which of the following expression is of t...

    Text Solution

    |

  10. If a cos theta - b sin theta =c, then prove that a sin theta + b cos t...

    Text Solution

    |

  11. Expression tan^(2)alpha + cot^(2)alpha is:

    Text Solution

    |

  12. Find maximum value of sin^(8)theta+cos^(14)theta.

    Text Solution

    |

  13. If P = 1/2 sin^(2)theta + 1/3 cos^(2)theta, then

    Text Solution

    |

  14. Minimum value of 5costheta + 12 is:

    Text Solution

    |

  15. If asin^(3)theta + bcos^(3)theta = sin theta costheta, 0 lt theta lt 9...

    Text Solution

    |

  16. sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

    Text Solution

    |

  17. A cow is tied in a pole with a rope. The cow moves in a circular pan k...

    Text Solution

    |

  18. (sintheta + cos theta)(tan theta + cottheta) =

    Text Solution

    |

  19. If secalpha, "cosec"alpha are roots of equation x^(2) + px + q=0, then

    Text Solution

    |

  20. If sectheta and tantheta are roots of equation ax^(2) + bx + c=0 (a,b...

    Text Solution

    |