Home
Class 14
MATHS
If x cos theta + y sin theta =2 and x co...

If `x cos theta + y sin theta =2` and `x cos theta - y sin theta =0`, then which one of the following is true ?

A

`x^(2) + y^(2) =1`

B

`1/x^(2) + 1/y^(2) =1`

C

`xy =1`

D

`x^(2) - y^(2) =1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have two equations: 1. \( x \cos \theta + y \sin \theta = 2 \) (Equation 1) 2. \( x \cos \theta - y \sin \theta = 0 \) (Equation 2) We need to find the values of \( x \) and \( y \) and then determine which of the given options is true. ### Step 1: Add the two equations Let's add Equation 1 and Equation 2: \[ (x \cos \theta + y \sin \theta) + (x \cos \theta - y \sin \theta) = 2 + 0 \] This simplifies to: \[ 2x \cos \theta = 2 \] ### Step 2: Solve for \( x \) Now, divide both sides by \( 2 \): \[ x \cos \theta = 1 \] Now, divide both sides by \( \cos \theta \): \[ x = \frac{1}{\cos \theta} \] ### Step 3: Substitute \( x \) back into Equation 2 Now, we will substitute the value of \( x \) into Equation 2 to find \( y \): \[ \frac{1}{\cos \theta} \cos \theta - y \sin \theta = 0 \] This simplifies to: \[ 1 - y \sin \theta = 0 \] ### Step 4: Solve for \( y \) Now, rearranging gives us: \[ y \sin \theta = 1 \] Now, divide both sides by \( \sin \theta \): \[ y = \frac{1}{\sin \theta} \] ### Step 5: Find \( x^2 + y^2 \) Now we have: \[ x = \frac{1}{\cos \theta}, \quad y = \frac{1}{\sin \theta} \] Now we can find \( x^2 + y^2 \): \[ x^2 = \left(\frac{1}{\cos \theta}\right)^2 = \frac{1}{\cos^2 \theta} \] \[ y^2 = \left(\frac{1}{\sin \theta}\right)^2 = \frac{1}{\sin^2 \theta} \] Thus, \[ x^2 + y^2 = \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} \] ### Step 6: Combine the fractions To combine these fractions, we find a common denominator: \[ x^2 + y^2 = \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ x^2 + y^2 = \frac{1}{\sin^2 \theta \cos^2 \theta} \] ### Step 7: Find \( \frac{1}{x^2} + \frac{1}{y^2} \) Now let's find \( \frac{1}{x^2} + \frac{1}{y^2} \): \[ \frac{1}{x^2} = \cos^2 \theta \] \[ \frac{1}{y^2} = \sin^2 \theta \] Thus, \[ \frac{1}{x^2} + \frac{1}{y^2} = \cos^2 \theta + \sin^2 \theta = 1 \] ### Conclusion The correct option is that \( \frac{1}{x^2} + \frac{1}{y^2} = 1 \).
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If A(theta)=[(sin theta, i cos theta),(i cos theta, sin theta)] , then which of the following is not true ?

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

Prove that : x cos theta + y sin theta = a and x sin theta - y cos theta = b are the parametric equations of a circle for all theta satisfying 0le thetalt2pi

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If x(cos theta)/(a)+y(sin theta)/(b)=1 and x(sin theta)/(a)-y(sin theta)/(b)=1 then

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2...

    Text Solution

    |

  2. If sin^(4)x + sin^(2) x =1, then the value of cot^(4)x + cot^(2)x is:

    Text Solution

    |

  3. If x cos theta + y sin theta =2 and x cos theta - y sin theta =0, then...

    Text Solution

    |

  4. Expression sin A (1 + tan A) + cos A(1+ cot A) is equal to:

    Text Solution

    |

  5. If 0^(@) lt theta lt 90^(@) and cos^(2) theta - sin^(2) theta = 1/2,th...

    Text Solution

    |

  6. If 3 sin theta + 4 cos theta = 5, then 3 cos theta - 4 sin theta is eq...

    Text Solution

    |

  7. (1-sinAcosA)/(cosA(secA-cosecA)).(sin^(2)A-cos^(2)A)/(sin^(3)A+cos^(3)...

    Text Solution

    |

  8. For 0^(@) lt theta lt 90^(@) which of the following expression is of t...

    Text Solution

    |

  9. If a cos theta - b sin theta =c, then prove that a sin theta + b cos t...

    Text Solution

    |

  10. Expression tan^(2)alpha + cot^(2)alpha is:

    Text Solution

    |

  11. Find maximum value of sin^(8)theta+cos^(14)theta.

    Text Solution

    |

  12. If P = 1/2 sin^(2)theta + 1/3 cos^(2)theta, then

    Text Solution

    |

  13. Minimum value of 5costheta + 12 is:

    Text Solution

    |

  14. If asin^(3)theta + bcos^(3)theta = sin theta costheta, 0 lt theta lt 9...

    Text Solution

    |

  15. sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

    Text Solution

    |

  16. A cow is tied in a pole with a rope. The cow moves in a circular pan k...

    Text Solution

    |

  17. (sintheta + cos theta)(tan theta + cottheta) =

    Text Solution

    |

  18. If secalpha, "cosec"alpha are roots of equation x^(2) + px + q=0, then

    Text Solution

    |

  19. If sectheta and tantheta are roots of equation ax^(2) + bx + c=0 (a,b...

    Text Solution

    |

  20. If x = h+ asectheta and y=k + b"cosec"theta then

    Text Solution

    |