Home
Class 14
MATHS
For 0^(@) lt theta lt 90^(@) which of th...

For `0^(@) lt theta lt 90^(@)` which of the following expression is of `theta` ?
(i) `costheta(1- sin theta)^(-1) + cos theta (1 + sintheta)^(-1)`
(ii) `cos theta (1+ "cosec"theta)^(-1) + cos theta ("cosec"theta -1)^(-1)`
Choose the correct code among following.

A

Only (i)

B

Only (ii)

C

Both (i) and (ii)

D

Neither (i) Nor (ii)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both expressions step by step. ### Expression (i): \[ \text{Expression 1: } \cos \theta (1 - \sin \theta)^{-1} + \cos \theta (1 + \sin \theta)^{-1} \] 1. **Rewrite the expression**: \[ \cos \theta \cdot \frac{1}{1 - \sin \theta} + \cos \theta \cdot \frac{1}{1 + \sin \theta} \] 2. **Factor out \(\cos \theta\)**: \[ \cos \theta \left( \frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} \right) \] 3. **Find a common denominator**: The common denominator for the fractions is \((1 - \sin \theta)(1 + \sin \theta)\): \[ = \cos \theta \left( \frac{(1 + \sin \theta) + (1 - \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} \right) \] 4. **Simplify the numerator**: \[ = \cos \theta \left( \frac{2}{1 - \sin^2 \theta} \right) \] 5. **Use the identity \(1 - \sin^2 \theta = \cos^2 \theta\)**: \[ = \cos \theta \cdot \frac{2}{\cos^2 \theta} \] 6. **Simplify**: \[ = \frac{2 \cos \theta}{\cos^2 \theta} = \frac{2}{\cos \theta} = 2 \sec \theta \] ### Expression (ii): \[ \text{Expression 2: } \cos \theta (1 + \csc \theta)^{-1} + \cos \theta (\csc \theta - 1)^{-1} \] 1. **Rewrite the expression**: \[ \cos \theta \cdot \frac{1}{1 + \csc \theta} + \cos \theta \cdot \frac{1}{\csc \theta - 1} \] 2. **Factor out \(\cos \theta\)**: \[ \cos \theta \left( \frac{1}{1 + \csc \theta} + \frac{1}{\csc \theta - 1} \right) \] 3. **Find a common denominator**: The common denominator is \((1 + \csc \theta)(\csc \theta - 1)\): \[ = \cos \theta \left( \frac{(\csc \theta - 1) + (1 + \csc \theta)}{(1 + \csc \theta)(\csc \theta - 1)} \right) \] 4. **Simplify the numerator**: \[ = \cos \theta \left( \frac{2 \csc \theta}{(1 + \csc \theta)(\csc \theta - 1)} \right) \] 5. **Rewrite \(\csc \theta\) as \(\frac{1}{\sin \theta}\)**: \[ = \cos \theta \cdot \frac{2 \cdot \frac{1}{\sin \theta}}{(1 + \frac{1}{\sin \theta})(\frac{1}{\sin \theta} - 1)} \] 6. **Simplify the denominator**: \[ = \cos \theta \cdot \frac{2}{\sin \theta} \cdot \frac{\sin^2 \theta}{(1 + 1)(1 - \sin \theta)} = \frac{2 \cos \theta \sin \theta}{\sin^2 \theta - 1} \] 7. **Use the identity \(\sin^2 \theta - 1 = -\cos^2 \theta\)**: \[ = \frac{-2 \cos \theta \sin \theta}{\cos^2 \theta} = -2 \tan \theta \] ### Conclusion: Both expressions contain \(\theta\): 1. Expression (i) simplifies to \(2 \sec \theta\). 2. Expression (ii) simplifies to \(-2 \tan \theta\). Thus, the correct answer is that both expressions involve \(\theta\). ### Final Answer: Both expressions have \(\theta\), so the answer is option C. ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

( 1 + cos theta) ( 1 - cos theta ) cosec^2 theta =

The value of (1+ cos theta)(1- cos theta) "cosec"^(2) theta =

Prove that ( cot theta - cosec theta)^(2) = ( 1- cos theta )/( 1+ cos theta )

Prove that: sin theta(1+ tan theta) + cos theta (1+ cot theta) = sec theta + "cosec" theta

(1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

Prove (cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

1- (sin ^ (2) theta) / (1 + cos theta) + (1 + cos theta) / (sin theta) - (sin theta) / (1-cos theta) - (1) / (sec theta)

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. If 3 sin theta + 4 cos theta = 5, then 3 cos theta - 4 sin theta is eq...

    Text Solution

    |

  2. (1-sinAcosA)/(cosA(secA-cosecA)).(sin^(2)A-cos^(2)A)/(sin^(3)A+cos^(3)...

    Text Solution

    |

  3. For 0^(@) lt theta lt 90^(@) which of the following expression is of t...

    Text Solution

    |

  4. If a cos theta - b sin theta =c, then prove that a sin theta + b cos t...

    Text Solution

    |

  5. Expression tan^(2)alpha + cot^(2)alpha is:

    Text Solution

    |

  6. Find maximum value of sin^(8)theta+cos^(14)theta.

    Text Solution

    |

  7. If P = 1/2 sin^(2)theta + 1/3 cos^(2)theta, then

    Text Solution

    |

  8. Minimum value of 5costheta + 12 is:

    Text Solution

    |

  9. If asin^(3)theta + bcos^(3)theta = sin theta costheta, 0 lt theta lt 9...

    Text Solution

    |

  10. sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

    Text Solution

    |

  11. A cow is tied in a pole with a rope. The cow moves in a circular pan k...

    Text Solution

    |

  12. (sintheta + cos theta)(tan theta + cottheta) =

    Text Solution

    |

  13. If secalpha, "cosec"alpha are roots of equation x^(2) + px + q=0, then

    Text Solution

    |

  14. If sectheta and tantheta are roots of equation ax^(2) + bx + c=0 (a,b...

    Text Solution

    |

  15. If x = h+ asectheta and y=k + b"cosec"theta then

    Text Solution

    |

  16. If sinA - sqrt(6)cos A= sqrt(7) cosA, then the value of cosA + sqrt(...

    Text Solution

    |

  17. If sintheta and costheta are roots of equation ax^(2) + bx + c =0, the...

    Text Solution

    |

  18. Maximum value of sin(cos x) is-

    Text Solution

    |

  19. If cos x + cos^(2)x =1, then the value of sin^(12)x + 3 sin^(10)x + 3s...

    Text Solution

    |

  20. If 3sintheta + 5 cos theta = 5, then the value of 5sintheta - 3cos th...

    Text Solution

    |