Home
Class 14
MATHS
If secalpha, "cosec"alpha are roots of e...

If `secalpha, "cosec"alpha` are roots of equation `x^(2) + px + q=0`, then

A

a)`p^(2)=p + 2q`

B

b)`q^(2)= p + 2q`

C

c)`p^(2) = q(q+2)`

D

d)`q^(2)=p(p+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the roots of the quadratic equation \( x^2 + px + q = 0 \) given that the roots are \( \sec \alpha \) and \( \csc \alpha \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the equation are given as \( \sec \alpha \) and \( \csc \alpha \). 2. **Sum of the Roots**: According to Vieta's formulas, the sum of the roots of the quadratic equation \( x^2 + px + q = 0 \) is given by: \[ \sec \alpha + \csc \alpha = -p \] 3. **Product of the Roots**: The product of the roots is given by: \[ \sec \alpha \cdot \csc \alpha = q \] 4. **Express in Terms of Sine and Cosine**: We can express \( \sec \alpha \) and \( \csc \alpha \) in terms of sine and cosine: \[ \sec \alpha = \frac{1}{\cos \alpha}, \quad \csc \alpha = \frac{1}{\sin \alpha} \] 5. **Sum of the Roots in Terms of Sine and Cosine**: \[ \sec \alpha + \csc \alpha = \frac{1}{\cos \alpha} + \frac{1}{\sin \alpha} = \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} \] Setting this equal to \(-p\): \[ \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} = -p \] 6. **Product of the Roots in Terms of Sine and Cosine**: \[ \sec \alpha \cdot \csc \alpha = \frac{1}{\cos \alpha} \cdot \frac{1}{\sin \alpha} = \frac{1}{\sin \alpha \cos \alpha} = q \] 7. **Rearranging the Equations**: From the product equation, we have: \[ \sin \alpha \cos \alpha = \frac{1}{q} \] Substitute this into the sum equation: \[ \sin \alpha + \cos \alpha = -p \cdot \sin \alpha \cos \alpha = -p \cdot \frac{1}{q} \] 8. **Square Both Sides**: Now, square both sides: \[ (\sin \alpha + \cos \alpha)^2 = \left(-\frac{p}{q}\right)^2 \] Expanding the left side: \[ \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{p^2}{q^2} \] Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ 1 + 2 \sin \alpha \cos \alpha = \frac{p^2}{q^2} \] 9. **Substituting \( \sin \alpha \cos \alpha \)**: \[ 1 + 2 \cdot \frac{1}{2q^2} = \frac{p^2}{q^2} \] This simplifies to: \[ 1 + \frac{1}{q^2} = \frac{p^2}{q^2} \] 10. **Final Rearrangement**: Multiply through by \( q^2 \): \[ q^2 + 1 = p^2 \] Thus, we have derived the relationship: \[ p^2 = q^2 + 1 \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If secalpha and cosecalpha are the roots of the equation x^2-px+q=0, then (i)p^2=q(q-2) (ii)p^2=q(q+2) (iii)p^2+q^2=2q (iv) none of these

If sec alpha and cosec alpha are the roots of the equation x^(2)-ax+b=0, then

If alpha and beta are the roots of the equation x^(2) + px + q =0, then what is alpha ^(2) + beta ^(2) equal to ?

3+4i is a root of the equation x^(2)+px+q=0 then

If alpha and beta are the roots of the equation x^(2) -px +q =0 , then the value of αβ is

If alpha , beta are the roots of the equation x^(2)-px+q=0 , then (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is equal to :

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. A cow is tied in a pole with a rope. The cow moves in a circular pan k...

    Text Solution

    |

  2. (sintheta + cos theta)(tan theta + cottheta) =

    Text Solution

    |

  3. If secalpha, "cosec"alpha are roots of equation x^(2) + px + q=0, then

    Text Solution

    |

  4. If sectheta and tantheta are roots of equation ax^(2) + bx + c=0 (a,b...

    Text Solution

    |

  5. If x = h+ asectheta and y=k + b"cosec"theta then

    Text Solution

    |

  6. If sinA - sqrt(6)cos A= sqrt(7) cosA, then the value of cosA + sqrt(...

    Text Solution

    |

  7. If sintheta and costheta are roots of equation ax^(2) + bx + c =0, the...

    Text Solution

    |

  8. Maximum value of sin(cos x) is-

    Text Solution

    |

  9. If cos x + cos^(2)x =1, then the value of sin^(12)x + 3 sin^(10)x + 3s...

    Text Solution

    |

  10. If 3sintheta + 5 cos theta = 5, then the value of 5sintheta - 3cos th...

    Text Solution

    |

  11. If tantheta + sectheta =p, then the value of sec theta is:

    Text Solution

    |

  12. If sintheta - cos theta = sqrt(2)cos theta, then the value of sintheta...

    Text Solution

    |

  13. If tan(theta + 3theta) tan (2theta + 3theta)=1, then the value of sin(...

    Text Solution

    |

  14. If secx = "cosec"y, then the value of "cosec"(x+y) is:

    Text Solution

    |

  15. If tan2theta = cot(theta - 18^(@)), then the value of sin(5theta)/4 + ...

    Text Solution

    |

  16. If sintheta + cos theta =1, then the value of sintheta - costheta is:

    Text Solution

    |

  17. If k=(1-sinalpha)(1-sinbeta)(1-singamma)=(1+sinalpha)(1+sinbeta)(1+si...

    Text Solution

    |

  18. If p=(secA - tanA) (secB - tanB) (secC - tanC) = (secA + tanA) (secB ...

    Text Solution

    |

  19. The value of (1+ cot theta + "cosec"theta) (1+ cot theta - "cosec"thet...

    Text Solution

    |

  20. Which of the following is not equal to: (tan theta + sectheta-1)/(tan ...

    Text Solution

    |