Home
Class 14
MATHS
If sintheta and costheta are roots of eq...

If `sintheta` and `costheta` are roots of equation `ax^(2) + bx + c =0`, then

A

`(a-c)^(2) = b^(2) - c^(2)`

B

`(a-c)^(2) = b^(2) + c^(2)`

C

`(a+c)^(2) = b^(2) - c^(2)`

D

`(a+c)^(2) = b^(2) + c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the relationship between the roots of the quadratic equation \( ax^2 + bx + c = 0 \) and the given roots \( \sin \theta \) and \( \cos \theta \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the equation are given as \( \sin \theta \) and \( \cos \theta \). 2. **Use the Relationship Between Roots and Coefficients**: For a quadratic equation of the form \( ax^2 + bx + c = 0 \), the sum of the roots \( r_1 + r_2 \) is given by: \[ r_1 + r_2 = -\frac{b}{a} \] Therefore, we can write: \[ \sin \theta + \cos \theta = -\frac{b}{a} \tag{1} \] 3. **Square the Sum of the Roots**: Squaring both sides of equation (1): \[ (\sin \theta + \cos \theta)^2 = \left(-\frac{b}{a}\right)^2 \] Expanding the left-hand side: \[ \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2} \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ 1 + 2\sin \theta \cos \theta = \frac{b^2}{a^2} \tag{2} \] 4. **Use the Product of the Roots**: The product of the roots \( r_1 \cdot r_2 \) is given by: \[ r_1 \cdot r_2 = \frac{c}{a} \] Thus, we have: \[ \sin \theta \cos \theta = \frac{c}{a} \tag{3} \] 5. **Substitute the Product into Equation (2)**: From equation (3), we can substitute \( \sin \theta \cos \theta \) into equation (2): \[ 1 + 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} \] Simplifying this gives: \[ 1 + \frac{2c}{a} = \frac{b^2}{a^2} \] 6. **Multiply Through by \( a^2 \)**: To eliminate the fractions, multiply through by \( a^2 \): \[ a^2 + 2ac = b^2 \] 7. **Rearranging the Equation**: Rearranging gives: \[ a^2 + 2ac - b^2 = 0 \] Adding \( c^2 \) to both sides: \[ a^2 + 2ac + c^2 = b^2 + c^2 \] 8. **Final Form**: The left-hand side can be factored: \[ (a + c)^2 = b^2 + c^2 \] Thus, we conclude that: \[ a + c^2 = b^2 + c^2 \] ### Conclusion: The correct relationship derived from the roots \( \sin \theta \) and \( \cos \theta \) is: \[ a + c^2 = b^2 + c^2 \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If sintheta and costheta are the roots of the equation ax^(2)-bx+c=0 , then which of the following selection is correct :

If sintheta and costheta are roots of the equation ax^(2)+bx+c=0 , prove that a^(2)-b^(2)+2ac=0 .

If sinthetaand costheta are the roots of the equation ax^2-bx+c=0 , show that : a^2+2ac-b^2=0 .

If both the roots of the equation ax^(2) + bx + c = 0 are zero, then

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then what are the roots of the equation cx^(2) + bx + a = 0 ?

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha and beta are roots of the equation ax^2+bx +c=0 , then lim_(xrarralpha) (1+ax^2+bx+c)^(1//x-alpha) , is

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. If x = h+ asectheta and y=k + b"cosec"theta then

    Text Solution

    |

  2. If sinA - sqrt(6)cos A= sqrt(7) cosA, then the value of cosA + sqrt(...

    Text Solution

    |

  3. If sintheta and costheta are roots of equation ax^(2) + bx + c =0, the...

    Text Solution

    |

  4. Maximum value of sin(cos x) is-

    Text Solution

    |

  5. If cos x + cos^(2)x =1, then the value of sin^(12)x + 3 sin^(10)x + 3s...

    Text Solution

    |

  6. If 3sintheta + 5 cos theta = 5, then the value of 5sintheta - 3cos th...

    Text Solution

    |

  7. If tantheta + sectheta =p, then the value of sec theta is:

    Text Solution

    |

  8. If sintheta - cos theta = sqrt(2)cos theta, then the value of sintheta...

    Text Solution

    |

  9. If tan(theta + 3theta) tan (2theta + 3theta)=1, then the value of sin(...

    Text Solution

    |

  10. If secx = "cosec"y, then the value of "cosec"(x+y) is:

    Text Solution

    |

  11. If tan2theta = cot(theta - 18^(@)), then the value of sin(5theta)/4 + ...

    Text Solution

    |

  12. If sintheta + cos theta =1, then the value of sintheta - costheta is:

    Text Solution

    |

  13. If k=(1-sinalpha)(1-sinbeta)(1-singamma)=(1+sinalpha)(1+sinbeta)(1+si...

    Text Solution

    |

  14. If p=(secA - tanA) (secB - tanB) (secC - tanC) = (secA + tanA) (secB ...

    Text Solution

    |

  15. The value of (1+ cot theta + "cosec"theta) (1+ cot theta - "cosec"thet...

    Text Solution

    |

  16. Which of the following is not equal to: (tan theta + sectheta-1)/(tan ...

    Text Solution

    |

  17. If tantheta+sintheta=m and tan theta-sin theta=n, then find the value ...

    Text Solution

    |

  18. The value of (cos theta)/(tantheta + sec theta) - (cos theta)/(tan the...

    Text Solution

    |

  19. sec^(2)theta + "cosec"^(2)theta is equal to which of the following?

    Text Solution

    |

  20. The identity (1+ tan theta - sec theta)(1+ cot theta - "cosec"theta) n...

    Text Solution

    |