Home
Class 14
MATHS
(sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^...

`(sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^(@) +sin^(2)7^(@) + ….. + sin^(2)87^(@) + sin^(2)89^(@))` equals

A

a)23

B

b)22

C

c)`22(1/2)`

D

d)`23(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2 1^\circ + \sin^2 3^\circ + \sin^2 5^\circ + \sin^2 7^\circ + \ldots + \sin^2 89^\circ \), we can use the properties of complementary angles and some trigonometric identities. ### Step-by-Step Solution: 1. **Identify the Pattern**: The terms in the series are sine squares of odd degrees from 1 to 89. We can pair the terms based on their complementary angles. For example, \( \sin^2 1^\circ \) pairs with \( \sin^2 89^\circ \), \( \sin^2 3^\circ \) pairs with \( \sin^2 87^\circ \), and so on. 2. **Use the Complementary Angle Identity**: Recall that \( \sin^2 \theta + \cos^2 \theta = 1 \). Since \( \sin^2 89^\circ = \cos^2 1^\circ \), we can write: \[ \sin^2 1^\circ + \sin^2 89^\circ = \sin^2 1^\circ + \cos^2 1^\circ = 1 \] Similarly, we can pair: \[ \sin^2 3^\circ + \sin^2 87^\circ = 1 \] \[ \sin^2 5^\circ + \sin^2 85^\circ = 1 \] \[ \ldots \] \[ \sin^2 43^\circ + \sin^2 47^\circ = 1 \] The last unpaired term is \( \sin^2 45^\circ \). 3. **Count the Pairs**: The odd degrees from 1 to 89 form an arithmetic progression where: - First term \( a = 1 \) - Last term \( l = 89 \) - Common difference \( d = 2 \) The number of terms \( n \) can be calculated using the formula: \[ n = \frac{l - a}{d} + 1 = \frac{89 - 1}{2} + 1 = 45 \] Since we can pair them, we have \( 22 \) pairs (each summing to \( 1 \)) and one unpaired term \( \sin^2 45^\circ \). 4. **Calculate the Total**: Each of the \( 22 \) pairs contributes \( 1 \) to the sum: \[ 22 \times 1 + \sin^2 45^\circ \] We know that \( \sin^2 45^\circ = \frac{1}{2} \). Thus, the total sum becomes: \[ 22 + \frac{1}{2} = 22.5 \] 5. **Final Answer**: Therefore, the value of the expression is: \[ \boxed{22.5} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

sin^(2)5^(@) + sin^(2)25^(@) + sin^(2)45^(@) + sin^(2) 65^(@) + sin^(2) 85^(@) is equal to:

sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+ .....+sin^(2)85^(@)+sin^(2)90^(@) is equal to

The value of sin^(2) 1^(@) + sin^(2) 2^(@) + sin^(2) 3^(@)+ . . . . + sin^(2) 89^(@) + sin ^(2) 90^(@) is

sin^(2)24^(@)-sin^(2)6^(@) is equal to

Find the value of sin^(2)1^(@)+sin^(2)2^(@)+sin^(2)3^(@)+ ----+sin^(2)87^(@)+sin^(2)88^(@)+sin^(2)89^(@)+sin^(2)90^(@) .

The value of the expression sin^(2)1^(@)+sin^(2)11^(@)+sin^(2)21^(@)+ sin^(2)31^(@)+sin^(2)41^(@)+sin^(2)45^(@)+ sin^(2)49^(@)+sin^(2)59^(@)+sin^(2)69^(@)+ sin^(2)79^(@)+sin^(2)89^(@) is :

Prove that: sin^(2)12^(@)+sin^(2)21^(@)+sin^(2)39^(@)+sin^(2)48^(@)=1+sin^(2)9^(@)+sin^(2)18^(@)

"Show that "sin^(2)16^(@)+sin^(2)23^(@)+sin^(2)37^(@)+sin^(2)44^(0)=1+sin^(2)7^(0)+sin^(2)14^(@)

sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. The identity (1+ tan theta - sec theta)(1+ cot theta - "cosec"theta) n...

    Text Solution

    |

  2. Which is equal to sectheta."cosec"theta ?

    Text Solution

    |

  3. The value of tan^(4)A + tan^(2)A in terms of secA is

    Text Solution

    |

  4. Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(...

    Text Solution

    |

  5. If cos^(2)alpha+cos^(2)beta=2, then the value of tan^(3)alpha+sin^(...

    Text Solution

    |

  6. If A = tan 11^(@) tan 29^(@), B = 2cot 61^(@) cot 79^(@), then which ...

    Text Solution

    |

  7. The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-t...

    Text Solution

    |

  8. The value of sin^2(1^@)+sin^2(5^@)+sin^2(9^@)+..........+sin^2(89^@) i...

    Text Solution

    |

  9. The numerical value of cot 18^(@) (cot 72^(@) cos^(2) 22^(@) + (1)/...

    Text Solution

    |

  10. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  11. If cos^(4)alpha - sin^(4)alpha = 2/3, then the value of 2 cos^(2)theta...

    Text Solution

    |

  12. If theta be a positive acute angle satisfying cos^(2)theta+cos^(4)...

    Text Solution

    |

  13. If theta is an acute angle and tan theta + cot theta=2, then the value...

    Text Solution

    |

  14. (sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^(@) +sin^(2)7^(@) + ….. + sin^...

    Text Solution

    |

  15. If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then...

    Text Solution

    |

  16. If (sin theta + cos theta)/(sin theta - cos theta)=3, then the value ...

    Text Solution

    |

  17. If sec^(2)theta+tan^(2)theta=7 , then the value of theta

    Text Solution

    |

  18. (secx.secy + tanx.tany)^(2)-(secx.tany + tanx.secy)^(2) in its simples...

    Text Solution

    |

  19. If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt th...

    Text Solution

    |

  20. If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@),then the value...

    Text Solution

    |