Home
Class 14
MATHS
If 2cos theta - sin theta = 1/sqrt(2), (...

If `2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@))` then the value of `2sin theta + cos theta` is:

A

`1/sqrt(2)`

B

`sqrt(2)`

C

`3/sqrt(2)`

D

`sqrt(2)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: 1. **Given Equation**: \[ 2 \cos \theta - \sin \theta = \frac{1}{\sqrt{2}} \] 2. **Rearranging the Equation**: We can rearrange this equation to express \(\sin \theta\) in terms of \(\cos \theta\): \[ \sin \theta = 2 \cos \theta - \frac{1}{\sqrt{2}} \] 3. **Finding \(2 \sin \theta + \cos \theta\)**: We need to find the value of \(2 \sin \theta + \cos \theta\). Substituting \(\sin \theta\) from the previous step: \[ 2 \sin \theta + \cos \theta = 2(2 \cos \theta - \frac{1}{\sqrt{2}}) + \cos \theta \] \[ = 4 \cos \theta - \frac{2}{\sqrt{2}} + \cos \theta \] \[ = 5 \cos \theta - \sqrt{2} \] 4. **Using the Pythagorean Identity**: We know that \(\sin^2 \theta + \cos^2 \theta = 1\). Substituting \(\sin \theta\) from step 2: \[ (2 \cos \theta - \frac{1}{\sqrt{2}})^2 + \cos^2 \theta = 1 \] 5. **Expanding the Equation**: Expanding the left-hand side: \[ (4 \cos^2 \theta - 2 \cdot 2 \cos \theta \cdot \frac{1}{\sqrt{2}} + \frac{1}{2}) + \cos^2 \theta = 1 \] \[ 4 \cos^2 \theta - \frac{4 \cos \theta}{\sqrt{2}} + \frac{1}{2} + \cos^2 \theta = 1 \] \[ 5 \cos^2 \theta - \frac{4 \cos \theta}{\sqrt{2}} + \frac{1}{2} - 1 = 0 \] \[ 5 \cos^2 \theta - \frac{4 \cos \theta}{\sqrt{2}} - \frac{1}{2} = 0 \] 6. **Solving the Quadratic Equation**: Let \(x = \cos \theta\). The equation becomes: \[ 5x^2 - \frac{4x}{\sqrt{2}} - \frac{1}{2} = 0 \] Multiplying through by \(2\) to eliminate the fraction: \[ 10x^2 - 4\sqrt{2}x - 1 = 0 \] 7. **Using the Quadratic Formula**: Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{4\sqrt{2} \pm \sqrt{(4\sqrt{2})^2 - 4 \cdot 10 \cdot (-1)}}{2 \cdot 10} \] \[ = \frac{4\sqrt{2} \pm \sqrt{32 + 40}}{20} \] \[ = \frac{4\sqrt{2} \pm \sqrt{72}}{20} \] \[ = \frac{4\sqrt{2} \pm 6\sqrt{2}}{20} \] \[ = \frac{10\sqrt{2}}{20} \quad \text{or} \quad \frac{-2\sqrt{2}}{20} \] \[ = \frac{\sqrt{2}}{2} \quad \text{(valid since } \theta \text{ is in the first quadrant)} \] 8. **Finding \(2 \sin \theta + \cos \theta\)**: Now substituting \(\cos \theta = \frac{\sqrt{2}}{2}\) back into \(2 \sin \theta + \cos \theta\): \[ 2 \sin \theta + \frac{\sqrt{2}}{2} = 5 \cdot \frac{\sqrt{2}}{2} - \sqrt{2} \] \[ = \frac{5\sqrt{2}}{2} - \sqrt{2} = \frac{5\sqrt{2}}{2} - \frac{2\sqrt{2}}{2} = \frac{3\sqrt{2}}{2} \] Thus, the final answer is: \[ \boxed{\frac{3\sqrt{2}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

lf 2 cos 3theta = sqrt3 and 0^@ lt theta lt 90^@ then the value of theta is

If sin theta sec^(2) theta = (2)/(3), 0^(@) lt theta lt 90^(@) , then the value of (tan^(2) theta + sin^(2)theta) is :

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

If (cos theta +sin theta) : ( cos theta - sin theta) = (sqrt(3) +1): (sqrt(3)-1), 0^(@) lt theta lt 90^(@) , then what is the value of sec theta ?

if (cos theta)/(1-sin theta)+ (cos theta)/(1 + sin theta) = 4 , 0^@ lt theta lt 90^@ then what is the value of (sec theta + cosec theta + cot theta)?

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. The identity (1+ tan theta - sec theta)(1+ cot theta - "cosec"theta) n...

    Text Solution

    |

  2. Which is equal to sectheta."cosec"theta ?

    Text Solution

    |

  3. The value of tan^(4)A + tan^(2)A in terms of secA is

    Text Solution

    |

  4. Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(...

    Text Solution

    |

  5. If cos^(2)alpha+cos^(2)beta=2, then the value of tan^(3)alpha+sin^(...

    Text Solution

    |

  6. If A = tan 11^(@) tan 29^(@), B = 2cot 61^(@) cot 79^(@), then which ...

    Text Solution

    |

  7. The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-t...

    Text Solution

    |

  8. The value of sin^2(1^@)+sin^2(5^@)+sin^2(9^@)+..........+sin^2(89^@) i...

    Text Solution

    |

  9. The numerical value of cot 18^(@) (cot 72^(@) cos^(2) 22^(@) + (1)/...

    Text Solution

    |

  10. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  11. If cos^(4)alpha - sin^(4)alpha = 2/3, then the value of 2 cos^(2)theta...

    Text Solution

    |

  12. If theta be a positive acute angle satisfying cos^(2)theta+cos^(4)...

    Text Solution

    |

  13. If theta is an acute angle and tan theta + cot theta=2, then the value...

    Text Solution

    |

  14. (sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^(@) +sin^(2)7^(@) + ….. + sin^...

    Text Solution

    |

  15. If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then...

    Text Solution

    |

  16. If (sin theta + cos theta)/(sin theta - cos theta)=3, then the value ...

    Text Solution

    |

  17. If sec^(2)theta+tan^(2)theta=7 , then the value of theta

    Text Solution

    |

  18. (secx.secy + tanx.tany)^(2)-(secx.tany + tanx.secy)^(2) in its simples...

    Text Solution

    |

  19. If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt th...

    Text Solution

    |

  20. If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@),then the value...

    Text Solution

    |