Home
Class 14
MATHS
If (sin theta + cos theta)/(sin theta - ...

If `(sin theta + cos theta)/(sin theta - cos theta)=3`, then the value of `sin^(4)theta - cos^(4)theta` is:

A

`1/5`

B

`2/5`

C

`3/5`

D

`4/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 3 \] ### Step 1: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ \sin \theta + \cos \theta = 3(\sin \theta - \cos \theta) \] ### Step 2: Expand the right side Expanding the right side, we have: \[ \sin \theta + \cos \theta = 3\sin \theta - 3\cos \theta \] ### Step 3: Rearrange the equation Now, rearranging the equation to bring like terms together: \[ \sin \theta + \cos \theta - 3\sin \theta + 3\cos \theta = 0 \] This simplifies to: \[ -2\sin \theta + 4\cos \theta = 0 \] ### Step 4: Solve for \(\tan \theta\) Rearranging gives: \[ 2\sin \theta = 4\cos \theta \] Dividing both sides by \(2\cos \theta\) (assuming \(\cos \theta \neq 0\)) gives: \[ \tan \theta = 2 \] ### Step 5: Find \(\sin^2 \theta\) and \(\cos^2 \theta\) Using the identity \(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\): \[ \tan^2 \theta = 2^2 = 4 \implies \sin^2 \theta = 4\cos^2 \theta \] Let \(\cos^2 \theta = x\). Then: \[ \sin^2 \theta = 4x \] Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ 4x + x = 1 \implies 5x = 1 \implies x = \frac{1}{5} \] Thus, \[ \cos^2 \theta = \frac{1}{5} \quad \text{and} \quad \sin^2 \theta = 4 \cdot \frac{1}{5} = \frac{4}{5} \] ### Step 6: Calculate \(\sin^4 \theta - \cos^4 \theta\) Now, we need to find \(\sin^4 \theta - \cos^4 \theta\). We can use the difference of squares: \[ \sin^4 \theta - \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^2 \theta - \cos^2 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^4 \theta - \cos^4 \theta = 1 \cdot (\sin^2 \theta - \cos^2 \theta) \] ### Step 7: Calculate \(\sin^2 \theta - \cos^2 \theta\) Now, we find \(\sin^2 \theta - \cos^2 \theta\): \[ \sin^2 \theta - \cos^2 \theta = \frac{4}{5} - \frac{1}{5} = \frac{3}{5} \] ### Final Result Thus, \[ \sin^4 \theta - \cos^4 \theta = \frac{3}{5} \] The final answer is: \[ \sin^4 \theta - \cos^4 \theta = \frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If (sin theta+cos theta)/(sin theta-cos theta)=3, then find the value of sin^(4)theta-cos^(4)theta

if sin theta-cos theta=0, then the value of (sin^(4)theta+cos^(4)theta)

If sin theta-cos theta=0 ,then the value of sin^(4)theta+cos^(4)theta is

If sin theta-cos theta=0 ,then the value of sin^(4)theta+cos^(4)theta is

If sin theta cos theta = sqrt3//4 ,then the value of sin^4theta + cos^4 theta is

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If 3 sin theta + 4 cos theta =5 , then value of sin theta is

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. The identity (1+ tan theta - sec theta)(1+ cot theta - "cosec"theta) n...

    Text Solution

    |

  2. Which is equal to sectheta."cosec"theta ?

    Text Solution

    |

  3. The value of tan^(4)A + tan^(2)A in terms of secA is

    Text Solution

    |

  4. Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(...

    Text Solution

    |

  5. If cos^(2)alpha+cos^(2)beta=2, then the value of tan^(3)alpha+sin^(...

    Text Solution

    |

  6. If A = tan 11^(@) tan 29^(@), B = 2cot 61^(@) cot 79^(@), then which ...

    Text Solution

    |

  7. The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-t...

    Text Solution

    |

  8. The value of sin^2(1^@)+sin^2(5^@)+sin^2(9^@)+..........+sin^2(89^@) i...

    Text Solution

    |

  9. The numerical value of cot 18^(@) (cot 72^(@) cos^(2) 22^(@) + (1)/...

    Text Solution

    |

  10. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  11. If cos^(4)alpha - sin^(4)alpha = 2/3, then the value of 2 cos^(2)theta...

    Text Solution

    |

  12. If theta be a positive acute angle satisfying cos^(2)theta+cos^(4)...

    Text Solution

    |

  13. If theta is an acute angle and tan theta + cot theta=2, then the value...

    Text Solution

    |

  14. (sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^(@) +sin^(2)7^(@) + ….. + sin^...

    Text Solution

    |

  15. If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then...

    Text Solution

    |

  16. If (sin theta + cos theta)/(sin theta - cos theta)=3, then the value ...

    Text Solution

    |

  17. If sec^(2)theta+tan^(2)theta=7 , then the value of theta

    Text Solution

    |

  18. (secx.secy + tanx.tany)^(2)-(secx.tany + tanx.secy)^(2) in its simples...

    Text Solution

    |

  19. If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt th...

    Text Solution

    |

  20. If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@),then the value...

    Text Solution

    |