Home
Class 14
MATHS
If sintheta - cos theta = 7/13 and 0 lt ...

If `sintheta - cos theta = 7/13` and `0 lt theta lt 90^(@)`,then the value of `sin theta + cos theta` is:

A

`17/13`

B

`13/17`

C

`1/13`

D

`1/17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta - \cos \theta = \frac{7}{13} \) and \( 0 < \theta < 90^\circ \), we want to find the value of \( \sin \theta + \cos \theta \). ### Step 1: Define Variables Let: \[ x = \sin \theta + \cos \theta \] We have: \[ \sin \theta - \cos \theta = \frac{7}{13} \quad \text{(Equation 1)} \] ### Step 2: Square Both Equations Now, we will square both equations: 1. From Equation 1: \[ (\sin \theta - \cos \theta)^2 = \left(\frac{7}{13}\right)^2 \] This expands to: \[ \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta = \frac{49}{169} \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we can substitute: \[ 1 - 2\sin \theta \cos \theta = \frac{49}{169} \] 2. For \( x \): \[ (\sin \theta + \cos \theta)^2 = x^2 \] This expands to: \[ \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta = x^2 \] Again substituting \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ 1 + 2\sin \theta \cos \theta = x^2 \] ### Step 3: Set Up the Equations Now we have two equations: 1. \( 1 - 2\sin \theta \cos \theta = \frac{49}{169} \) 2. \( 1 + 2\sin \theta \cos \theta = x^2 \) ### Step 4: Solve for \( \sin \theta \cos \theta \) From the first equation, we can isolate \( 2\sin \theta \cos \theta \): \[ 2\sin \theta \cos \theta = 1 - \frac{49}{169} \] Calculating the right side: \[ 1 = \frac{169}{169} \quad \Rightarrow \quad 1 - \frac{49}{169} = \frac{169 - 49}{169} = \frac{120}{169} \] Thus: \[ 2\sin \theta \cos \theta = \frac{120}{169} \] Dividing by 2: \[ \sin \theta \cos \theta = \frac{60}{169} \] ### Step 5: Substitute Back to Find \( x^2 \) Now substituting \( 2\sin \theta \cos \theta \) into the second equation: \[ 1 + 2\sin \theta \cos \theta = x^2 \] Substituting \( 2\sin \theta \cos \theta = \frac{120}{169} \): \[ 1 + \frac{120}{169} = x^2 \] Calculating the left side: \[ 1 = \frac{169}{169} \quad \Rightarrow \quad x^2 = \frac{169 + 120}{169} = \frac{289}{169} \] ### Step 6: Solve for \( x \) Taking the square root: \[ x = \sqrt{\frac{289}{169}} = \frac{\sqrt{289}}{\sqrt{169}} = \frac{17}{13} \] ### Conclusion Thus, the value of \( \sin \theta + \cos \theta \) is: \[ \boxed{\frac{17}{13}} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

lf 2 cos 3theta = sqrt3 and 0^@ lt theta lt 90^@ then the value of theta is

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt theta lt 90^(@) , then the value of theta is

If 3sin theta = 2cos^(2) theta, 0^circ lt theta lt 90^circ , then the value of (tan theta+ cos theta + sin theta) is:

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11A
  1. The identity (1+ tan theta - sec theta)(1+ cot theta - "cosec"theta) n...

    Text Solution

    |

  2. Which is equal to sectheta."cosec"theta ?

    Text Solution

    |

  3. The value of tan^(4)A + tan^(2)A in terms of secA is

    Text Solution

    |

  4. Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(...

    Text Solution

    |

  5. If cos^(2)alpha+cos^(2)beta=2, then the value of tan^(3)alpha+sin^(...

    Text Solution

    |

  6. If A = tan 11^(@) tan 29^(@), B = 2cot 61^(@) cot 79^(@), then which ...

    Text Solution

    |

  7. The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-t...

    Text Solution

    |

  8. The value of sin^2(1^@)+sin^2(5^@)+sin^2(9^@)+..........+sin^2(89^@) i...

    Text Solution

    |

  9. The numerical value of cot 18^(@) (cot 72^(@) cos^(2) 22^(@) + (1)/...

    Text Solution

    |

  10. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  11. If cos^(4)alpha - sin^(4)alpha = 2/3, then the value of 2 cos^(2)theta...

    Text Solution

    |

  12. If theta be a positive acute angle satisfying cos^(2)theta+cos^(4)...

    Text Solution

    |

  13. If theta is an acute angle and tan theta + cot theta=2, then the value...

    Text Solution

    |

  14. (sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^(@) +sin^(2)7^(@) + ….. + sin^...

    Text Solution

    |

  15. If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then...

    Text Solution

    |

  16. If (sin theta + cos theta)/(sin theta - cos theta)=3, then the value ...

    Text Solution

    |

  17. If sec^(2)theta+tan^(2)theta=7 , then the value of theta

    Text Solution

    |

  18. (secx.secy + tanx.tany)^(2)-(secx.tany + tanx.secy)^(2) in its simples...

    Text Solution

    |

  19. If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt th...

    Text Solution

    |

  20. If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@),then the value...

    Text Solution

    |