Home
Class 14
MATHS
The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8...

The value of `[1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)]` is
A)6
B)5
C)-7
D)-6

A

6

B

5

C

`-7`

D

`-6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ E = \left[\frac{1}{\sqrt{9} - \sqrt{8}}\right] - \left[\frac{1}{\sqrt{8} - \sqrt{7}}\right] + \left[\frac{1}{\sqrt{7} - \sqrt{6}}\right] - \left[\frac{1}{\sqrt{6} - \sqrt{5}}\right] + \left[\frac{1}{\sqrt{5} - \sqrt{4}}\right] \] we will rationalize each term in the expression. ### Step 1: Rationalize the first term \(\frac{1}{\sqrt{9} - \sqrt{8}}\) To rationalize, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{\sqrt{9} - \sqrt{8}} \cdot \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9} + \sqrt{8}} = \frac{\sqrt{9} + \sqrt{8}}{(\sqrt{9})^2 - (\sqrt{8})^2} = \frac{\sqrt{9} + \sqrt{8}}{9 - 8} = \sqrt{9} + \sqrt{8} \] ### Step 2: Rationalize the second term \(-\frac{1}{\sqrt{8} - \sqrt{7}}\) Similarly, we rationalize: \[ -\frac{1}{\sqrt{8} - \sqrt{7}} \cdot \frac{\sqrt{8} + \sqrt{7}}{\sqrt{8} + \sqrt{7}} = -\frac{\sqrt{8} + \sqrt{7}}{8 - 7} = -(\sqrt{8} + \sqrt{7}) \] ### Step 3: Rationalize the third term \(\frac{1}{\sqrt{7} - \sqrt{6}}\) Rationalizing gives: \[ \frac{1}{\sqrt{7} - \sqrt{6}} \cdot \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}} = \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \sqrt{7} + \sqrt{6} \] ### Step 4: Rationalize the fourth term \(-\frac{1}{\sqrt{6} - \sqrt{5}}\) Rationalizing gives: \[ -\frac{1}{\sqrt{6} - \sqrt{5}} \cdot \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} + \sqrt{5}} = -\frac{\sqrt{6} + \sqrt{5}}{6 - 5} = -(\sqrt{6} + \sqrt{5}) \] ### Step 5: Rationalize the fifth term \(\frac{1}{\sqrt{5} - \sqrt{4}}\) Rationalizing gives: \[ \frac{1}{\sqrt{5} - \sqrt{4}} \cdot \frac{\sqrt{5} + \sqrt{4}}{\sqrt{5} + \sqrt{4}} = \frac{\sqrt{5} + \sqrt{4}}{5 - 4} = \sqrt{5} + \sqrt{4} \] ### Step 6: Combine all the terms Now we combine all the rationalized terms: \[ E = (\sqrt{9} + \sqrt{8}) - (\sqrt{8} + \sqrt{7}) + (\sqrt{7} + \sqrt{6}) - (\sqrt{6} + \sqrt{5}) + (\sqrt{5} + \sqrt{4}) \] ### Step 7: Simplify the expression Notice that terms will cancel out: - \(\sqrt{8}\) from the first and second terms cancels. - \(\sqrt{7}\) from the second and third terms cancels. - \(\sqrt{6}\) from the third and fourth terms cancels. - \(\sqrt{5}\) from the fourth and fifth terms cancels. This leaves us with: \[ E = \sqrt{9} + \sqrt{4} = 3 + 2 = 5 \] ### Final Answer Thus, the value of the expression is \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • Fundamentals

    DISHA PUBLICATION|Exercise Practice Exercises(Standard level)|31 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Practice Exercises(Expert level)|18 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos

Similar Questions

Explore conceptually related problems

The simplest value of (1/(sqrt9-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5))

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

(1)/(sqrt(7)-sqrt(6))

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

1/(sqrt7+sqrt6-sqrt13)=

DISHA PUBLICATION-Fundamentals-Practice Exercises(Foundation level)
  1. If 3^(4X-2)=729, then find the value of X.

    Text Solution

    |

  2. What number must be added to the expression 16 a^(2) - 12 a to make it...

    Text Solution

    |

  3. The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/...

    Text Solution

    |

  4. Simplify: 5root3(250)+7root3(16)-14root3(54)

    Text Solution

    |

  5. The no plate of a bus had peculiarity. The bus number was a perfect sq...

    Text Solution

    |

  6. If ** means adding 6 times the second number to the first number then ...

    Text Solution

    |

  7. If a and b are positive ingegers, such that a^b = 125, " then " (a - b...

    Text Solution

    |

  8. If p xx q = p+q+p/q, then find the value of 8 xx 2.

    Text Solution

    |

  9. If x*y=x^2+y^2-x y , then the value of 9*11 is (a) 93 (b) 103 (c) 1...

    Text Solution

    |

  10. The least number by which we multiply to the 11760, so that can get a ...

    Text Solution

    |

  11. ((0.081xx0.484)/(0.0064xx6.25))^(1/2)=?

    Text Solution

    |

  12. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  13. If difference between them 4/5 " of " 3/4 of a number and 2/5 " of " 1...

    Text Solution

    |

  14. If sum of two numbers is 42 and their product is 437, then find their ...

    Text Solution

    |

  15. 54.327 xx 357.2 xx 0.0057 is the same as:

    Text Solution

    |

  16. Write the 44000 in Roman numerals

    Text Solution

    |

  17. Write LXXIX in Hindu-Arabic numerals

    Text Solution

    |

  18. If (a+b)/(b+c)=(c+d)/(d+a), then

    Text Solution

    |

  19. A number lies between 300 and 400. If the number is added to the numbe...

    Text Solution

    |

  20. x and y are 2 different digits. If the sum of the two digit numbers fo...

    Text Solution

    |