Home
Class 14
MATHS
Simplify: 5root3(250)+7root3(16)-14root...

Simplify: ` 5root3(250)+7root3(16)-14root3(54)`

A

`-2root3(2)`

B

`-3root3(2)`

C

`3root3(2)`

D

`2root3(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 5\sqrt[3]{250} + 7\sqrt[3]{16} - 14\sqrt[3]{54} \), we will follow these steps: ### Step 1: Simplify each cube root term 1. **Simplifying \( \sqrt[3]{250} \)**: \[ 250 = 2 \times 5^3 \] Thus, \[ \sqrt[3]{250} = \sqrt[3]{2 \times 5^3} = \sqrt[3]{2} \times 5 \] 2. **Simplifying \( \sqrt[3]{16} \)**: \[ 16 = 2^4 = 2^3 \times 2 \] Thus, \[ \sqrt[3]{16} = \sqrt[3]{2^3 \times 2} = \sqrt[3]{2^3} \times \sqrt[3]{2} = 2 \sqrt[3]{2} \] 3. **Simplifying \( \sqrt[3]{54} \)**: \[ 54 = 27 \times 2 = 3^3 \times 2 \] Thus, \[ \sqrt[3]{54} = \sqrt[3]{3^3 \times 2} = \sqrt[3]{3^3} \times \sqrt[3]{2} = 3 \sqrt[3]{2} \] ### Step 2: Substitute back into the expression Now substituting back into the original expression: \[ 5\sqrt[3]{250} = 5 \times 5 \sqrt[3]{2} = 25 \sqrt[3]{2} \] \[ 7\sqrt[3]{16} = 7 \times 2 \sqrt[3]{2} = 14 \sqrt[3]{2} \] \[ 14\sqrt[3]{54} = 14 \times 3 \sqrt[3]{2} = 42 \sqrt[3]{2} \] ### Step 3: Combine the terms Now, we can combine all the terms: \[ 25\sqrt[3]{2} + 14\sqrt[3]{2} - 42\sqrt[3]{2} \] Combine the coefficients: \[ (25 + 14 - 42)\sqrt[3]{2} = (-3)\sqrt[3]{2} \] ### Final Answer Thus, the simplified expression is: \[ -3\sqrt[3]{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Fundamentals

    DISHA PUBLICATION|Exercise Practice Exercises(Standard level)|31 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Practice Exercises(Expert level)|18 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos

Similar Questions

Explore conceptually related problems

Simplify : 5root(3)(250)+7root(3)(16)-14root(3)(54)

root(3)(2)+root(3)(16)-root(3)(54)

root(3)(135)-:root(3)(5)

Simplify 8root(3)(16)+root(3)(54)+root(3)(250)

Simplify : [root(3)root(6)(5^(9))]^(4)[root(3)root(6)(5^(9)]]^(4)

root(3)(4)times root(3)(16)

DISHA PUBLICATION-Fundamentals-Practice Exercises(Foundation level)
  1. What number must be added to the expression 16 a^(2) - 12 a to make it...

    Text Solution

    |

  2. The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/...

    Text Solution

    |

  3. Simplify: 5root3(250)+7root3(16)-14root3(54)

    Text Solution

    |

  4. The no plate of a bus had peculiarity. The bus number was a perfect sq...

    Text Solution

    |

  5. If ** means adding 6 times the second number to the first number then ...

    Text Solution

    |

  6. If a and b are positive ingegers, such that a^b = 125, " then " (a - b...

    Text Solution

    |

  7. If p xx q = p+q+p/q, then find the value of 8 xx 2.

    Text Solution

    |

  8. If x*y=x^2+y^2-x y , then the value of 9*11 is (a) 93 (b) 103 (c) 1...

    Text Solution

    |

  9. The least number by which we multiply to the 11760, so that can get a ...

    Text Solution

    |

  10. ((0.081xx0.484)/(0.0064xx6.25))^(1/2)=?

    Text Solution

    |

  11. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  12. If difference between them 4/5 " of " 3/4 of a number and 2/5 " of " 1...

    Text Solution

    |

  13. If sum of two numbers is 42 and their product is 437, then find their ...

    Text Solution

    |

  14. 54.327 xx 357.2 xx 0.0057 is the same as:

    Text Solution

    |

  15. Write the 44000 in Roman numerals

    Text Solution

    |

  16. Write LXXIX in Hindu-Arabic numerals

    Text Solution

    |

  17. If (a+b)/(b+c)=(c+d)/(d+a), then

    Text Solution

    |

  18. A number lies between 300 and 400. If the number is added to the numbe...

    Text Solution

    |

  19. x and y are 2 different digits. If the sum of the two digit numbers fo...

    Text Solution

    |

  20. If a gt 1, then arrange the following in ascending order. I. root3(r...

    Text Solution

    |