Home
Class 14
MATHS
If Z+1/Z =1, Z^64 +1/(Z^(64)) is equal ...

If `Z+1/Z =1, Z^64 +1/(Z^(64))` is equal to

A

0

B

1

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( Z + \frac{1}{Z} = 1 \) and find the value of \( Z^{64} + \frac{1}{Z^{64}} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ Z + \frac{1}{Z} = 1 \] ### Step 2: Multiply both sides by \( Z \) To eliminate the fraction, we multiply both sides by \( Z \): \[ Z^2 + 1 = Z \] ### Step 3: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ Z^2 - Z + 1 = 0 \] ### Step 4: Use the quadratic formula We can apply the quadratic formula \( Z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -1, c = 1 \): \[ Z = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ Z = \frac{1 \pm \sqrt{1 - 4}}{2} \] \[ Z = \frac{1 \pm \sqrt{-3}}{2} \] \[ Z = \frac{1 \pm i\sqrt{3}}{2} \] ### Step 5: Find \( Z^{64} + \frac{1}{Z^{64}} \) Let \( Z = \frac{1 + i\sqrt{3}}{2} \) and \( \frac{1}{Z} = \frac{1 - i\sqrt{3}}{2} \). We can use the property of powers of complex numbers. Using De Moivre's theorem, we can express \( Z \) in polar form. The modulus \( r \) is: \[ r = |Z| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}/2}{1/2}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] Thus, we can express \( Z \) as: \[ Z = e^{i\frac{\pi}{3}} \] Then, \( Z^{64} \) can be calculated as: \[ Z^{64} = \left(e^{i\frac{\pi}{3}}\right)^{64} = e^{i\frac{64\pi}{3}} = e^{i(21\pi + \frac{1\pi}{3})} = e^{i\frac{\pi}{3}} \quad (\text{since } e^{i2\pi k} = 1) \] ### Step 6: Calculate \( Z^{64} + \frac{1}{Z^{64}} \) Now we find: \[ Z^{64} + \frac{1}{Z^{64}} = e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}} = 2 \cos\left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1 \] ### Final Answer Thus, the value of \( Z^{64} + \frac{1}{Z^{64}} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • Fundamentals

    DISHA PUBLICATION|Exercise Practice Exercises(Expert level)|18 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos

Similar Questions

Explore conceptually related problems

If |z|=1, then (1+z)/(1+bar(z)) is equal to

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If z+(1)/(z)+1=0, "then" z^(2003)+(1)/(z^(2003)) is equal to

If z+(1)/(z)=2cos6^(@), then z^(1000)+(1)/(z^(1000))+1 is equal to

If |z| = 1 , then ((1 + z)/(1 + z)) equals :

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to