Home
Class 14
MATHS
Find the square of 679....

Find the square of 679.

A

461041

B

461141

C

460041

D

451011

Text Solution

AI Generated Solution

The correct Answer is:
To find the square of 679, we can use the identity for the square of a binomial, specifically \( (a - b)^2 = a^2 - 2ab + b^2 \). Here, we can express 679 as \( 700 - 21 \). ### Step-by-Step Solution: 1. **Identify \( a \) and \( b \)**: - Let \( a = 700 \) and \( b = 21 \). - We need to find \( (700 - 21)^2 \). 2. **Use the binomial square identity**: - According to the identity \( (a - b)^2 = a^2 - 2ab + b^2 \), we can substitute \( a \) and \( b \): \[ (700 - 21)^2 = 700^2 - 2 \times 700 \times 21 + 21^2 \] 3. **Calculate \( a^2 \) (which is \( 700^2 \))**: \[ 700^2 = 490000 \] 4. **Calculate \( b^2 \) (which is \( 21^2 \))**: \[ 21^2 = 441 \] 5. **Calculate \( 2ab \)**: \[ 2 \times 700 \times 21 = 29400 \] 6. **Combine the results**: - Now substitute the values back into the equation: \[ 679^2 = 490000 + 441 - 29400 \] 7. **Perform the addition and subtraction**: - First, add \( 490000 + 441 \): \[ 490000 + 441 = 490441 \] - Then subtract \( 29400 \): \[ 490441 - 29400 = 461041 \] 8. **Final Result**: - Therefore, the square of 679 is: \[ 679^2 = 461041 \]
Promotional Banner

Topper's Solved these Questions

  • Fundamentals

    DISHA PUBLICATION|Exercise Practice Exercises(Expert level)|18 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos

Similar Questions

Explore conceptually related problems

Find the square of 5793649.

Find the square of 47 86

Find the square of 112.

Find the square of 31.

Find the square of 211

Find the squares of the number127

How to find the square of a trinomial.

Find the square root of 3600.

Find the square root of 10404.

Find the square root of 3600.