Home
Class 12
MATHS
Find the value of x such that cos (sin^...

Find the value of x such that `cos (sin^(-1)x)=(1)/(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`x = pm (sqrt(3))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve cos(2 sin^(-1)x)=(1)/(9)

Find the value of x satisfying sin^(-1)((2a)/(1+a^(2)))+cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1) ((2x)/(1-x^(2)))

Find the value of "tan" (1)/(2)[ "sin"^(-1)(2x)/(1+x^(2)) +"cos"^(-1) (1-y^(2))/(1+y^(2))], |x| lt 1, y gt 0 and xy lt 1 .

Find the derivate of : y = cos(m sin^-1x)

Find the derivative of : y = cos{2 sin^-1(cos x)}

If sec^(-1)x="cosec"^(-1)y(|x|ge1,|y|ge1) , then find the value of cos^(-1)(1/x)+cos^(-1)(1/y) .

Find the value of a for which f(x)={(sin^2(ax)/(x^2), "" xne0),(1, x=0 ""):} is continuous at x = 0

Find the derivate of y = (3 - 2x)sin^(-1)2x .