Home
Class 12
MATHS
If the sum of the ascute angles tan^(-1)...

If the sum of the ascute angles `tan^(-1)x` and `"tan"^(-1) (1)/(2)` is `45^(@)`, then what is the value of x?

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

If "tan"^(-1)(x-1)/(x-2) +"tan"^(-1) (x+1)/(x+2) =(pi)/(4) , then find the value of x.

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Find the value of tan(2"tan"^(-1) (1)/(5)) .

If x in R then find the value of cos (tan^(-1)x +cot^(-1)x) .

Evaluate the following. "tan"^(-1) (1)/(2) +"tan"^(-1)(1)/(3)

Evaluate Delta tan^-1 x .

Prove that "tan"^(-1)1 +tan^(-1)2 +tan^(-1)3 =pi .

Solve 2 tan^(-1)(cos x) =tan^(-1)(2 "cosec"x) .