Home
Class 12
MATHS
If sin^(-1)x +sin^(-1)y =(2pi)/(3), then...

If `sin^(-1)x +sin^(-1)y =(2pi)/(3)`, then find the value of `cos^(-1)x +cos^(-1)y`.

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2) , then find the value of x.

If sin^(-1) x = (pi)/(5) , write down the value of cos^(-1)x .

Find the value of cos^(-1)x +cos^(-1) sqrt(1-x^(2)) .

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

Find x, if sin^(-1)x +sin^(-1)2x =(pi)/(3) .

If sin ("sin"^(-1)(1)/(5) +cos^(-1)x)=1 , then find the value of x.

If sec^(-1)x="cosec"^(-1)y(|x|ge1,|y|ge1) , then find the value of cos^(-1)(1/x)+cos^(-1)(1/y) .

If cos^(-1)x-sin^(-1)x=0 , then write down the value of x.

Find the value of sin^(-1)x +cos^(-1)x, -1 le x le 1 .

Find the derivate of : y = cos(m sin^-1x)