Home
Class 12
MATHS
Prove that cot^(-1) ((sqrt(1+sin x) +...

Prove that
`cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : cot^-1{frac{sqrt(1+sinx)+sqrt(1-sinx)}{sqrt(1+sinx)-sqrt(1-sinx)}}=x/2

Find the derivate of : y= tan^-1(frac(sqrt(1+sinx)- sqrt(1 - sin x))(sqrt(1 +sinx)+sqrt(1-sin x)))

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .

Evaluate int_(0)^(pi//2) (sqrt( sin x))/(sqrt(sin x)+ sqrt(cos x))dx.

Solve : int(sin x)(sqrt(1+cosx) ) dx

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)})=pi/4-1/2cos^-1 x