Home
Class 12
MATHS
If sin^-1 x +sin^-1 y + sin ^-1 z=pi, pr...

If `sin^-1 x +sin^-1 y + sin ^-1 z=pi`, prove that `xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1 x+sin^-1 y +sin^-1 z=pi/2 , prove that x^2+y^2+z^2+2xyz=1 .

If tan^-1 x+tan^-1 y+tan^-1 z=pi , prove that x+y+z=xyz

If tan^-1 x+tan^-1 y+tan^-1 z=pi/2 , prove that xy+yz+zx=1

If cos^-1 x +cos^-1 y + cos ^-1 z=pi , prove that x^2+y^2+z^2+2xyz=1 .

If sin^-1 x+sin^-1 y+sin^-1 z=pi , prove that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

if y = sin^-1x , show that (1-x^2) y_2 = xy_1

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If sin^-1 x+sin^-1 y=theta , prove that x^2+y^2+2xycostheta=sin^2theta

Find x, if sin^(-1)x +sin^(-1)2x =(pi)/(3) .