Home
Class 12
MATHS
If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(...

If `"tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha`, then prove that `x^(2) =sin 2alpha`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .

If y=tan^-1frac{sqrt(1+x^2)+sqrt(1-x^2)}{sqrt(1+x^2)-sqrt(1-x^2)] , show that x^2=sin 2y

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)})=pi/4-1/2cos^-1 x

Solve (dy)/(dx) + sqrt((1-y^(2))/(1-x^(2)))=0