Home
Class 12
MATHS
Find x, if sin^(-1)x +sin^(-1)2x =(pi)/(...

Find x, if `sin^(-1)x +sin^(-1)2x =(pi)/(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x) -2 sin^(-1)x =(pi)/(2)

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

Solve for x, cos^(-1) x + sin^(-1)((x)/(2))=(pi)/(6) .

If sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2) , then find the value of x.

If sin^(-1)x +sin^(-1)y =(2pi)/(3) , then find the value of cos^(-1)x +cos^(-1)y .

Solve the following equation for x. sin^(-1)(6x)+sin^(-1) (6sqrt(3)x)= -(pi)/(2) .

Solve sin^(-1)x +sin^(-1)(3x-4x^(3))=pi .

Find the value of sin^(-1)x +cos^(-1)x, -1 le x le 1 .

Find (dy)/(dx) . y=x^(sin^(-1)x

Find the principal value of sin^(-1)[sin ((2pi)/(3))]