Home
Class 12
MATHS
If sin ("sin"^(-1)(1)/(5) +cos^(-1)x)=1,...

If `sin ("sin"^(-1)(1)/(5) +cos^(-1)x)=1`, then find the value of x.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2) , then find the value of x.

If sin(3x+10)=cos(x+24) then find the value of x.

If sin^(-1)x +sin^(-1)y =(2pi)/(3) , then find the value of cos^(-1)x +cos^(-1)y .

If cos^(-1)x-sin^(-1)x=0 , then write down the value of x.

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

If sec^(-1)x="cosec"^(-1)y(|x|ge1,|y|ge1) , then find the value of cos^(-1)(1/x)+cos^(-1)(1/y) .

If sin^(-1) x = (pi)/(5) , write down the value of cos^(-1)x .

Evaluate sin("cos"^(-1)(3)/(5))

If f(x)=sin^(-1) x+sec^(-1)((1)/(x)) then find f'(x).

Solve cos(2 sin^(-1)x)=(1)/(9)