Home
Class 12
MATHS
If tan^-1 x+tan^-1 y+tan^-1 z=pi/2, prov...

If `tan^-1 x+tan^-1 y+tan^-1 z=pi/2`, prove that `xy+yz+zx=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^-1 x+tan^-1 y+tan^-1 z=pi , prove that x+y+z=xyz

If cos^-1 x +cos^-1 y + cos ^-1 z=pi , prove that x^2+y^2+z^2+2xyz=1 .

Solve : tan^-1 2x+tan^-1 3x=pi/4

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If tan^-1frac{yz}{xr}+tan^-1frac{zx}{yr}+tan^-1frac{xy}{zr}=pi/2 , prove that x^2+y^2+z^2=r^2 .

Show that : tan(tan^-1 x+tan^-1 y+tan^-1 z)=cot(cot^-1 x+cot^-1 y+cot^-1 z)

If tan^2alpha = 1 + tan^2beta ,then prove that cos^2 beta = cot^2alpha

Solve for x : 2 tan^-1 x+sec^-1 x=pi/2

Prove that "tan"^(-1)1 +tan^(-1)2 +tan^(-1)3 =pi .

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .